Cargando…
Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms
BACKGROUND: The risk factors of diabetic retinopathy (DR) were investigated extensively in the past studies, but it remains unknown which risk factors were more associated with the DR than others. If we can detect the DR related risk factors more accurately, we can then exercise early prevention str...
Autores principales: | Tsao, Hsin-Yi, Chan, Pei-Ying, Su, Emily Chia-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101083/ https://www.ncbi.nlm.nih.gov/pubmed/30367589 http://dx.doi.org/10.1186/s12859-018-2277-0 |
Ejemplares similares
-
Diabetic retinopathy classification for supervised machine learning algorithms
por: Nakayama, Luis Filipe, et al.
Publicado: (2022) -
Predicting clinical pregnancy using clinical features and machine learning algorithms in in vitro fertilization
por: Wang, Cheng-Wei, et al.
Publicado: (2022) -
A novel interpretable machine learning algorithm to identify optimal parameter space for cancer growth
por: Coggan, Helena, et al.
Publicado: (2022) -
Performance and Limitation of Machine Learning Algorithms for Diabetic Retinopathy Screening: Meta-analysis
por: Wu, Jo-Hsuan, et al.
Publicado: (2021) -
Automatic Screening of Diabetic Retinopathy Using Fundus Images and Machine Learning Algorithms
por: Mujeeb Rahman, K. K., et al.
Publicado: (2022)