Cargando…
BMCMDA: a novel model for predicting human microbe-disease associations via binary matrix completion
BACKGROUND: Human Microbiome Project reveals the significant mutualistic influence between human body and microbes living in it. Such an influence lead to an interesting phenomenon that many noninfectious diseases are closely associated with diverse microbes. However, the identification of microbe-n...
Autores principales: | Shi, Jian-Yu, Huang, Hua, Zhang, Yan-Ning, Cao, Jiang-Bo, Yiu, Siu-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101089/ https://www.ncbi.nlm.nih.gov/pubmed/30367598 http://dx.doi.org/10.1186/s12859-018-2274-3 |
Ejemplares similares
-
Predicting binary, discrete and continued lncRNA-disease associations via a unified framework based on graph regression
por: Shi, Jian-Yu, et al.
Publicado: (2017) -
NNAN: Nearest Neighbor Attention Network to Predict Drug–Microbe Associations
por: Zhu, Bei, et al.
Publicado: (2022) -
Corrigendum: NNAN: Nearest Neighbor Attention Network to Predict Drug–Microbe Associations
por: Zhu, Bei, et al.
Publicado: (2022) -
Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization
por: Yu, Hui, et al.
Publicado: (2018) -
Detecting drug communities and predicting comprehensive drug–drug interactions via balance regularized semi-nonnegative matrix factorization
por: Shi, Jian-Yu, et al.
Publicado: (2019)