Cargando…

Single Molecule Fluorescence In Situ Hybridization (smFISH) Analysis in Budding Yeast Vegetative Growth and Meiosis

Single molecule fluorescence in situ hybridization (smFISH) is a powerful technique to study gene expression in single cells due to its ability to detect and count individual RNA molecules. Complementary to deep sequencing-based methods, smFISH provides information about the cell-to-cell variation i...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jingxun, McSwiggen, David, Ünal, Elçin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101419/
https://www.ncbi.nlm.nih.gov/pubmed/29889208
http://dx.doi.org/10.3791/57774
Descripción
Sumario:Single molecule fluorescence in situ hybridization (smFISH) is a powerful technique to study gene expression in single cells due to its ability to detect and count individual RNA molecules. Complementary to deep sequencing-based methods, smFISH provides information about the cell-to-cell variation in transcript abundance and the subcellular localization of a given RNA. Recently, we have used smFISH to study the expression of the gene NDC80 during meiosis in budding yeast, in which two transcript isoforms exist and the short transcript isoform has its entire sequence shared with the long isoform. To confidently identify each transcript isoform, we optimized known smFISH protocols and obtained high consistency and quality of smFISH data for the samples acquired during budding yeast meiosis. Here, we describe this optimized protocol, the criteria that we use to determine whether high quality of smFISH data is obtained, and some tips for implementing this protocol in other yeast strains and growth conditions.