Cargando…
Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7
Bayesian inference of phylogeny using Markov chain Monte Carlo (MCMC) plays a central role in understanding evolutionary history from molecular sequence data. Visualizing and analyzing the MCMC-generated samples from the posterior distribution is a key step in any non-trivial Bayesian inference. We...
Autores principales: | Rambaut, Andrew, Drummond, Alexei J, Xie, Dong, Baele, Guy, Suchard, Marc A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101584/ https://www.ncbi.nlm.nih.gov/pubmed/29718447 http://dx.doi.org/10.1093/sysbio/syy032 |
Ejemplares similares
-
BEAGLE 3: Improved Performance, Scaling, and Usability for a High-Performance Computing Library for Statistical Phylogenetics
por: Ayres, Daniel L, et al.
Publicado: (2019) -
Bayesian Phylogenetics with BEAUti and the BEAST 1.7
por: Drummond, Alexei J., et al.
Publicado: (2012) -
Markov-Modulated Continuous-Time Markov Chains to Identify Site- and Branch-Specific Evolutionary Variation in BEAST
por: Baele, Guy, et al.
Publicado: (2020) -
MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space
por: Ronquist, Fredrik, et al.
Publicado: (2012) -
BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics
por: Ayres, Daniel L., et al.
Publicado: (2012)