Cargando…

Effect of UV irradiation on Sulfolobus acidocaldarius and involvement of the general transcription factor TFB3 in the early UV response

Exposure to UV light can result in severe DNA damage. The alternative general transcription factor (GTF) TFB3 has been proposed to play a key role in the UV stress response in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Reporter gene assays confirmed that tfb3 is upregulated 90–180...

Descripción completa

Detalles Bibliográficos
Autores principales: Schult, Frank, Le, Thuong N, Albersmeier, Andreas, Rauch, Bernadette, Blumenkamp, Patrick, van der Does, Chris, Goesmann, Alexander, Kalinowski, Jörn, Albers, Sonja-Verena, Siebers, Bettina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101591/
https://www.ncbi.nlm.nih.gov/pubmed/29982548
http://dx.doi.org/10.1093/nar/gky527
Descripción
Sumario:Exposure to UV light can result in severe DNA damage. The alternative general transcription factor (GTF) TFB3 has been proposed to play a key role in the UV stress response in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Reporter gene assays confirmed that tfb3 is upregulated 90–180 min after UV treatment. In vivo tagging and immunodetection of TFB3 confirmed the induced expression at 90 min. Analysis of a tfb3 insertion mutant showed that genes encoding proteins of the Ups pili and the Ced DNA importer are no longer induced in a tfb3 insertion mutant after UV treatment, which was confirmed by aggregation assays. Thus, TFB3 plays a crucial role in the activation of these genes. Genome wide transcriptome analysis allowed a differentiation between a TFB3-dependent and a TFB3-independent early UV response. The TFB3-dependent UV response is characterized by the early induction of TFB3, followed by TFB3-dependent expression of genes involved in e.g. Ups pili formation and the Ced DNA importer. Many genes were downregulated in the tfb3 insertion mutant confirming the hypothesis that TFB3 acts as an activator of transcription. The TFB3-independent UV response includes the repression of nucleotide metabolism, replication and cell cycle progression in order to allow DNA repair.