Cargando…

Characterization of Synthetic Polymers via Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) Mass Spectrometry

There are many techniques that can be employed in the characterization of synthetic homopolymers, but few provide as useful of information for end group analysis as matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). This tutorial demonstrates methods for opt...

Descripción completa

Detalles Bibliográficos
Autores principales: Payne, Molly E., Grayson, Scott M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101691/
https://www.ncbi.nlm.nih.gov/pubmed/29939185
http://dx.doi.org/10.3791/57174
Descripción
Sumario:There are many techniques that can be employed in the characterization of synthetic homopolymers, but few provide as useful of information for end group analysis as matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). This tutorial demonstrates methods for optimization of the sample preparation, spectral acquisition, and data analysis of synthetic polymers using MALDI-TOF MS. Critical parameters during sample preparation include the selection of the matrix, identification of an appropriate cationization salt, and tuning the relative proportions of the matrix, cation, and analyte. The acquisition parameters, such as mode (linear or reflector), polarization (positive or negative), acceleration voltage, and delay time, are also important. Given some knowledge of the chemistry involved to synthesize the polymer and optimizing both the data acquisition parameters and the sample preparation conditions, spectra should be obtained with sufficient resolution and mass accuracy to enable the unambiguous determination of the end groups of most homopolymers (masses below 10,000) in addition to the repeat unit mass and the overall molecular weight distribution. Though demonstrated on a limited set of polymers, these general techniques are applicable to a much wider range of synthetic polymers for determining mass distributions, though end group determination is only possible for homopolymers with narrow dispersity.