Cargando…

Human axial progenitors generate trunk neural crest cells in vitro

The neural crest (NC) is a multipotent embryonic cell population that generates distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC rema...

Descripción completa

Detalles Bibliográficos
Autores principales: Frith, Thomas JR, Granata, Ilaria, Wind, Matthew, Stout, Erin, Thompson, Oliver, Neumann, Katrin, Stavish, Dylan, Heath, Paul R, Ortmann, Daniel, Hackland, James OS, Anastassiadis, Konstantinos, Gouti, Mina, Briscoe, James, Wilson, Valerie, Johnson, Stuart L, Placzek, Marysia, Guarracino, Mario R, Andrews, Peter W, Tsakiridis, Anestis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101942/
https://www.ncbi.nlm.nih.gov/pubmed/30095409
http://dx.doi.org/10.7554/eLife.35786
_version_ 1783349091055435776
author Frith, Thomas JR
Granata, Ilaria
Wind, Matthew
Stout, Erin
Thompson, Oliver
Neumann, Katrin
Stavish, Dylan
Heath, Paul R
Ortmann, Daniel
Hackland, James OS
Anastassiadis, Konstantinos
Gouti, Mina
Briscoe, James
Wilson, Valerie
Johnson, Stuart L
Placzek, Marysia
Guarracino, Mario R
Andrews, Peter W
Tsakiridis, Anestis
author_facet Frith, Thomas JR
Granata, Ilaria
Wind, Matthew
Stout, Erin
Thompson, Oliver
Neumann, Katrin
Stavish, Dylan
Heath, Paul R
Ortmann, Daniel
Hackland, James OS
Anastassiadis, Konstantinos
Gouti, Mina
Briscoe, James
Wilson, Valerie
Johnson, Stuart L
Placzek, Marysia
Guarracino, Mario R
Andrews, Peter W
Tsakiridis, Anestis
author_sort Frith, Thomas JR
collection PubMed
description The neural crest (NC) is a multipotent embryonic cell population that generates distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors.
format Online
Article
Text
id pubmed-6101942
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-61019422018-08-22 Human axial progenitors generate trunk neural crest cells in vitro Frith, Thomas JR Granata, Ilaria Wind, Matthew Stout, Erin Thompson, Oliver Neumann, Katrin Stavish, Dylan Heath, Paul R Ortmann, Daniel Hackland, James OS Anastassiadis, Konstantinos Gouti, Mina Briscoe, James Wilson, Valerie Johnson, Stuart L Placzek, Marysia Guarracino, Mario R Andrews, Peter W Tsakiridis, Anestis eLife Developmental Biology The neural crest (NC) is a multipotent embryonic cell population that generates distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors. eLife Sciences Publications, Ltd 2018-08-10 /pmc/articles/PMC6101942/ /pubmed/30095409 http://dx.doi.org/10.7554/eLife.35786 Text en © 2018, Frith et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Developmental Biology
Frith, Thomas JR
Granata, Ilaria
Wind, Matthew
Stout, Erin
Thompson, Oliver
Neumann, Katrin
Stavish, Dylan
Heath, Paul R
Ortmann, Daniel
Hackland, James OS
Anastassiadis, Konstantinos
Gouti, Mina
Briscoe, James
Wilson, Valerie
Johnson, Stuart L
Placzek, Marysia
Guarracino, Mario R
Andrews, Peter W
Tsakiridis, Anestis
Human axial progenitors generate trunk neural crest cells in vitro
title Human axial progenitors generate trunk neural crest cells in vitro
title_full Human axial progenitors generate trunk neural crest cells in vitro
title_fullStr Human axial progenitors generate trunk neural crest cells in vitro
title_full_unstemmed Human axial progenitors generate trunk neural crest cells in vitro
title_short Human axial progenitors generate trunk neural crest cells in vitro
title_sort human axial progenitors generate trunk neural crest cells in vitro
topic Developmental Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101942/
https://www.ncbi.nlm.nih.gov/pubmed/30095409
http://dx.doi.org/10.7554/eLife.35786
work_keys_str_mv AT friththomasjr humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT granatailaria humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT windmatthew humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT stouterin humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT thompsonoliver humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT neumannkatrin humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT stavishdylan humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT heathpaulr humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT ortmanndaniel humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT hacklandjamesos humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT anastassiadiskonstantinos humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT goutimina humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT briscoejames humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT wilsonvalerie humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT johnsonstuartl humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT placzekmarysia humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT guarracinomarior humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT andrewspeterw humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro
AT tsakiridisanestis humanaxialprogenitorsgeneratetrunkneuralcrestcellsinvitro