Cargando…

Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction

Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond...

Descripción completa

Detalles Bibliográficos
Autores principales: Pudell, J., Maznev, A. A., Herzog, M., Kronseder, M., Back, C. H., Malinowski, G., von Reppert, A., Bargheer, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102217/
https://www.ncbi.nlm.nih.gov/pubmed/30127415
http://dx.doi.org/10.1038/s41467-018-05693-5
_version_ 1783349111789977600
author Pudell, J.
Maznev, A. A.
Herzog, M.
Kronseder, M.
Back, C. H.
Malinowski, G.
von Reppert, A.
Bargheer, M.
author_facet Pudell, J.
Maznev, A. A.
Herzog, M.
Kronseder, M.
Back, C. H.
Malinowski, G.
von Reppert, A.
Bargheer, M.
author_sort Pudell, J.
collection PubMed
description Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond diffraction experiments provide unique experimental access to heat transport over single digit nanometer distances. Here, we investigate the structural response and the energy flow in the ultrathin double-layer system: gold on ferromagnetic nickel. Even though the excitation pulse is incident from the Au side, we observe a very rapid heating of the Ni lattice, whereas the Au lattice initially remains cold. The subsequent heat transfer from Ni to the Au lattice is found to be two orders of magnitude slower than predicted by the conventional heat equation and much slower than electron–phonon coupling times in Au. We present a simplified model calculation highlighting the relevant thermophysical quantities.
format Online
Article
Text
id pubmed-6102217
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61022172018-08-22 Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction Pudell, J. Maznev, A. A. Herzog, M. Kronseder, M. Back, C. H. Malinowski, G. von Reppert, A. Bargheer, M. Nat Commun Article Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond diffraction experiments provide unique experimental access to heat transport over single digit nanometer distances. Here, we investigate the structural response and the energy flow in the ultrathin double-layer system: gold on ferromagnetic nickel. Even though the excitation pulse is incident from the Au side, we observe a very rapid heating of the Ni lattice, whereas the Au lattice initially remains cold. The subsequent heat transfer from Ni to the Au lattice is found to be two orders of magnitude slower than predicted by the conventional heat equation and much slower than electron–phonon coupling times in Au. We present a simplified model calculation highlighting the relevant thermophysical quantities. Nature Publishing Group UK 2018-08-20 /pmc/articles/PMC6102217/ /pubmed/30127415 http://dx.doi.org/10.1038/s41467-018-05693-5 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Pudell, J.
Maznev, A. A.
Herzog, M.
Kronseder, M.
Back, C. H.
Malinowski, G.
von Reppert, A.
Bargheer, M.
Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction
title Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction
title_full Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction
title_fullStr Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction
title_full_unstemmed Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction
title_short Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction
title_sort layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond x-ray diffraction
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102217/
https://www.ncbi.nlm.nih.gov/pubmed/30127415
http://dx.doi.org/10.1038/s41467-018-05693-5
work_keys_str_mv AT pudellj layerspecificobservationofslowthermalequilibrationinultrathinmetallicnanostructuresbyfemtosecondxraydiffraction
AT maznevaa layerspecificobservationofslowthermalequilibrationinultrathinmetallicnanostructuresbyfemtosecondxraydiffraction
AT herzogm layerspecificobservationofslowthermalequilibrationinultrathinmetallicnanostructuresbyfemtosecondxraydiffraction
AT kronsederm layerspecificobservationofslowthermalequilibrationinultrathinmetallicnanostructuresbyfemtosecondxraydiffraction
AT backch layerspecificobservationofslowthermalequilibrationinultrathinmetallicnanostructuresbyfemtosecondxraydiffraction
AT malinowskig layerspecificobservationofslowthermalequilibrationinultrathinmetallicnanostructuresbyfemtosecondxraydiffraction
AT vonrepperta layerspecificobservationofslowthermalequilibrationinultrathinmetallicnanostructuresbyfemtosecondxraydiffraction
AT bargheerm layerspecificobservationofslowthermalequilibrationinultrathinmetallicnanostructuresbyfemtosecondxraydiffraction