Cargando…
JAK/STAT guarantees robust neural stem cell differentiation by shutting off biological noise
Organismal development is precisely regulated by a sequence of gene functions even in the presence of biological noise. However, it is difficult to evaluate the effect of noise in vivo, and the mechanisms by which noise is filtered during development are largely unknown. To identify the noise-cancel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102247/ https://www.ncbi.nlm.nih.gov/pubmed/30127451 http://dx.doi.org/10.1038/s41598-018-30929-1 |
Sumario: | Organismal development is precisely regulated by a sequence of gene functions even in the presence of biological noise. However, it is difficult to evaluate the effect of noise in vivo, and the mechanisms by which noise is filtered during development are largely unknown. To identify the noise-canceling mechanism, we used the fly visual system, in which the timing of differentiation of neural stem cells is spatio-temporally ordered. Our mathematical model predicts that JAK/STAT signaling contributes to noise canceling to guarantee the robust progression of the differentiation wave in silico. We further demonstrate that the suppression of JAK/STAT signaling causes stochastic and ectopic neural stem cell differentiation in vivo, suggesting an evolutionarily conserved function of JAK/STAT to regulate the robustness of stem cell differentiation. |
---|