Cargando…
Symmetry-restoring quantum phase transition in a two-dimensional spinor condensate
Bose Einstein condensates of spin-1 atoms are known to exist in two different phases, both having spontaneously broken spin-rotation symmetry, a ferromagnetic and a polar condensate. Here we show that in two spatial dimensions it is possible to achieve a quantum phase transition from a polar condens...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102292/ https://www.ncbi.nlm.nih.gov/pubmed/30127340 http://dx.doi.org/10.1038/s41598-018-30876-x |
Sumario: | Bose Einstein condensates of spin-1 atoms are known to exist in two different phases, both having spontaneously broken spin-rotation symmetry, a ferromagnetic and a polar condensate. Here we show that in two spatial dimensions it is possible to achieve a quantum phase transition from a polar condensate into a singlet phase symmetric under rotations in spin space. This can be done by using particle density as a tuning parameter. Starting from the polar phase at high density the system can be tuned into a strong-coupling intermediate-density point where the phase transition into a symmetric phase takes place. By further reducing the particle density the symmetric phase can be continuously deformed into a Bose-Einstein condensate of singlet atomic pairs. We calculate the region of the parameter space where such a molecular phase is stable against collapse. |
---|