Cargando…
Uncertainpy: A Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience
Computational models in neuroscience typically contain many parameters that are poorly constrained by experimental data. Uncertainty quantification and sensitivity analysis provide rigorous procedures to quantify how the model output depends on this parameter uncertainty. Unfortunately, the applicat...
Autores principales: | Tennøe, Simen, Halnes, Geir, Einevoll, Gaute T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102374/ https://www.ncbi.nlm.nih.gov/pubmed/30154710 http://dx.doi.org/10.3389/fninf.2018.00049 |
Ejemplares similares
-
A computational model for gonadotropin releasing cells in the teleost fish medaka
por: Halnes, Geir, et al.
Publicado: (2019) -
Sharing with Python
por: Einevoll, Gaute T.
Publicado: (2009) -
Finite Element Simulation of Ionic Electrodiffusion in Cellular Geometries
por: Ellingsrud, Ada J., et al.
Publicado: (2020) -
Python in neuroscience
por: Muller, Eilif, et al.
Publicado: (2015) -
An Evaluation of the Accuracy of Classical Models for Computing the Membrane Potential and Extracellular Potential for Neurons
por: Tveito, Aslak, et al.
Publicado: (2017)