Cargando…
Quaternary Structure, Salt Sensitivity, and Allosteric Regulation of β-AMYLASE2 From Arabidopsis thaliana
The β-amylase family in Arabidopsis thaliana has nine members, four of which are both plastid-localized and, based on active-site sequence conservation, potentially capable of hydrolyzing starch to maltose. We recently reported that one of these enzymes, BAM2, is catalytically active in the presence...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102588/ https://www.ncbi.nlm.nih.gov/pubmed/30154813 http://dx.doi.org/10.3389/fpls.2018.01176 |
_version_ | 1783349198264991744 |
---|---|
author | Monroe, Jonathan D. Pope, Lauren E. Breault, Jillian S. Berndsen, Christopher E. Storm, Amanda R. |
author_facet | Monroe, Jonathan D. Pope, Lauren E. Breault, Jillian S. Berndsen, Christopher E. Storm, Amanda R. |
author_sort | Monroe, Jonathan D. |
collection | PubMed |
description | The β-amylase family in Arabidopsis thaliana has nine members, four of which are both plastid-localized and, based on active-site sequence conservation, potentially capable of hydrolyzing starch to maltose. We recently reported that one of these enzymes, BAM2, is catalytically active in the presence of physiological levels of KCl, exhibits sigmoidal kinetics with a Hill coefficient of over 3, is tetrameric, has a putative secondary binding site (SBS) for starch, and is highly co-expressed with other starch metabolizing enzymes. Here we generated a tetrameric homology model of Arabidopsis BAM2 that is a dimer of dimers in which the putative SBSs of two subunits form a deep groove between the subunits. To validate this model and identify key residues, we generated a series of mutations and characterized the purified proteins. (1) Three point mutations in the putative subunit interfaces disrupted tetramerization; two that interfered with the formation of the starch-binding groove were largely inactive, whereas a third mutation prevented pairs of dimers from forming and was active. (2) The model revealed that a 30-residue N-terminal acidic region, not found in other BAMs, appears to form part of the putative starch-binding groove. A mutant lacking this acidic region was active and did not require KCl for activity. (3) A conserved tryptophan residue in the SBS is necessary for activation and may form π-bonds with sugars in starch. (4) Sequence alignments revealed a conserved serine residue next to one of the catalytic glutamic acid residues, that is a conserved glycine in all other active BAMs. The serine side chain points away from the active site and toward the putative starch-binding groove. Mutating the serine in BAM2 to a glycine resulted in an enzyme with a V(Max) similar to that of the wild type enzyme but with a 7.5-fold lower K(M) for soluble starch. Interestingly, the mutant no longer exhibited sigmoidal kinetics, suggesting that allosteric communication between the putative SBS and the active site was disrupted. These results confirm the unusual structure and function of this widespread enzyme, and suggest that our understanding of starch degradation in plants is incomplete. |
format | Online Article Text |
id | pubmed-6102588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61025882018-08-28 Quaternary Structure, Salt Sensitivity, and Allosteric Regulation of β-AMYLASE2 From Arabidopsis thaliana Monroe, Jonathan D. Pope, Lauren E. Breault, Jillian S. Berndsen, Christopher E. Storm, Amanda R. Front Plant Sci Plant Science The β-amylase family in Arabidopsis thaliana has nine members, four of which are both plastid-localized and, based on active-site sequence conservation, potentially capable of hydrolyzing starch to maltose. We recently reported that one of these enzymes, BAM2, is catalytically active in the presence of physiological levels of KCl, exhibits sigmoidal kinetics with a Hill coefficient of over 3, is tetrameric, has a putative secondary binding site (SBS) for starch, and is highly co-expressed with other starch metabolizing enzymes. Here we generated a tetrameric homology model of Arabidopsis BAM2 that is a dimer of dimers in which the putative SBSs of two subunits form a deep groove between the subunits. To validate this model and identify key residues, we generated a series of mutations and characterized the purified proteins. (1) Three point mutations in the putative subunit interfaces disrupted tetramerization; two that interfered with the formation of the starch-binding groove were largely inactive, whereas a third mutation prevented pairs of dimers from forming and was active. (2) The model revealed that a 30-residue N-terminal acidic region, not found in other BAMs, appears to form part of the putative starch-binding groove. A mutant lacking this acidic region was active and did not require KCl for activity. (3) A conserved tryptophan residue in the SBS is necessary for activation and may form π-bonds with sugars in starch. (4) Sequence alignments revealed a conserved serine residue next to one of the catalytic glutamic acid residues, that is a conserved glycine in all other active BAMs. The serine side chain points away from the active site and toward the putative starch-binding groove. Mutating the serine in BAM2 to a glycine resulted in an enzyme with a V(Max) similar to that of the wild type enzyme but with a 7.5-fold lower K(M) for soluble starch. Interestingly, the mutant no longer exhibited sigmoidal kinetics, suggesting that allosteric communication between the putative SBS and the active site was disrupted. These results confirm the unusual structure and function of this widespread enzyme, and suggest that our understanding of starch degradation in plants is incomplete. Frontiers Media S.A. 2018-08-14 /pmc/articles/PMC6102588/ /pubmed/30154813 http://dx.doi.org/10.3389/fpls.2018.01176 Text en Copyright © 2018 Monroe, Pope, Breault, Berndsen and Storm. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Monroe, Jonathan D. Pope, Lauren E. Breault, Jillian S. Berndsen, Christopher E. Storm, Amanda R. Quaternary Structure, Salt Sensitivity, and Allosteric Regulation of β-AMYLASE2 From Arabidopsis thaliana |
title | Quaternary Structure, Salt Sensitivity, and Allosteric Regulation of β-AMYLASE2 From Arabidopsis thaliana |
title_full | Quaternary Structure, Salt Sensitivity, and Allosteric Regulation of β-AMYLASE2 From Arabidopsis thaliana |
title_fullStr | Quaternary Structure, Salt Sensitivity, and Allosteric Regulation of β-AMYLASE2 From Arabidopsis thaliana |
title_full_unstemmed | Quaternary Structure, Salt Sensitivity, and Allosteric Regulation of β-AMYLASE2 From Arabidopsis thaliana |
title_short | Quaternary Structure, Salt Sensitivity, and Allosteric Regulation of β-AMYLASE2 From Arabidopsis thaliana |
title_sort | quaternary structure, salt sensitivity, and allosteric regulation of β-amylase2 from arabidopsis thaliana |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102588/ https://www.ncbi.nlm.nih.gov/pubmed/30154813 http://dx.doi.org/10.3389/fpls.2018.01176 |
work_keys_str_mv | AT monroejonathand quaternarystructuresaltsensitivityandallostericregulationofbamylase2fromarabidopsisthaliana AT popelaurene quaternarystructuresaltsensitivityandallostericregulationofbamylase2fromarabidopsisthaliana AT breaultjillians quaternarystructuresaltsensitivityandallostericregulationofbamylase2fromarabidopsisthaliana AT berndsenchristophere quaternarystructuresaltsensitivityandallostericregulationofbamylase2fromarabidopsisthaliana AT stormamandar quaternarystructuresaltsensitivityandallostericregulationofbamylase2fromarabidopsisthaliana |