Cargando…

IL-35 inhibits human osteoclastogenesis from monocytes induced by receptor-activator of NF-κB ligand

IL-35 is known as a regulatory cytokine produced by regulatory T cells. It has also been reported that IL-35 suppresses the proliferation of Th17 cells, which is involved in the pathogenesis of many autoimmune diseases. However, in rheumatoid arthritis patients, the role of IL-35 is controversial, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Yago, Toru, Nanke, Yuki, Kawamoto, Manabu, Kobashigawa, Tsuyoshi, Yamanaka, Hisashi, Kotake, Shigeru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Polish Society of Experimental and Clinical Immunology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102623/
https://www.ncbi.nlm.nih.gov/pubmed/30135626
http://dx.doi.org/10.5114/ceji.2018.77384
Descripción
Sumario:IL-35 is known as a regulatory cytokine produced by regulatory T cells. It has also been reported that IL-35 suppresses the proliferation of Th17 cells, which is involved in the pathogenesis of many autoimmune diseases. However, in rheumatoid arthritis patients, the role of IL-35 is controversial, and the role of IL-35 in bone metabolism has not been clarified. We investigated the effect of IL-35 on human osteoclast differentiation and activation. We first evaluated the effect of rhIL-35 on human osteoclastogenesis from monocytes cultured alone, induced by soluble-RANKL. We also examined the role of IL-35 on the bone-resorption function of mature osteoclasts. Furthermore, we analysed the molecular mechanism of IL-35 function in monocytes or pre-osteoclasts using RT-PCR. rhIL-35 significantly inhibited human osteoclastogenesis in a dose-dependent manner. In addition, rhIL-35 also significantly decreased the area of pit formation by mature osteoclasts. rhIL-35 significantly decreased mRNA expression of RANK in monocytes and RANK and FOS in pre-osteoclasts. Our current findings suggest that IL-35 inhibits osteoclastogenesis and osteoclast activation by inhibiting both RANK and FOS. IL-35 also has an inhibitory effect on osteoclastic-bone resorption, suggesting that IL-35 may have a therapeutic potential for RA.