Cargando…
A random forest classifier predicts recurrence risk in patients with ovarian cancer
Ovarian cancer (OC) is associated with a poor prognosis due to difficulties in early detection. The aims of the present study were to construct a recurrence risk prediction model and to reveal important OC genes or pathways. RNA sequencing data was obtained for 307 OC samples, and the corresponding...
Autores principales: | Cheng, Li, Li, Lin, Wang, Liling, Li, Xiaofang, Xing, Hui, Zhou, Jinting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102638/ https://www.ncbi.nlm.nih.gov/pubmed/30066910 http://dx.doi.org/10.3892/mmr.2018.9300 |
Ejemplares similares
-
Establishment of a SVM classifier to predict recurrence of ovarian cancer
por: Zhou, Jinting, et al.
Publicado: (2018) -
Novel Biomarker Prediction for Lung Cancer Using Random Forest
Classifiers
por: C, Lavanya, et al.
Publicado: (2023) -
Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites
por: Chen, Zhen, et al.
Publicado: (2018) -
Random Bits Forest: a Strong Classifier/Regressor for Big Data
por: Wang, Yi, et al.
Publicado: (2016) -
BitterSweetForest: A Random Forest Based Binary Classifier to Predict Bitterness and Sweetness of Chemical Compounds
por: Banerjee, Priyanka, et al.
Publicado: (2018)