Cargando…
Gaussian Process Regressions for Inverse Problems and Parameter Searches in Models of Ventricular Mechanics
Patient specific models of ventricular mechanics require the optimization of their many parameters under the uncertainties associated with imaging of cardiac function. We present a strategy to reduce the complexity of parametric searches for 3-D FE models of left ventricular contraction. The study e...
Autores principales: | Di Achille, Paolo, Harouni, Ahmed, Khamzin, Svyatoslav, Solovyova, Olga, Rice, John J., Gurev, Viatcheslav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102646/ https://www.ncbi.nlm.nih.gov/pubmed/30154725 http://dx.doi.org/10.3389/fphys.2018.01002 |
Ejemplares similares
-
Model order reduction for left ventricular mechanics via congruency training
por: Di Achille, Paolo, et al.
Publicado: (2020) -
Machine Learning Prediction of Cardiac Resynchronisation Therapy Response From Combination of Clinical and Model-Driven Data
por: Khamzin, Svyatoslav, et al.
Publicado: (2021) -
Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapy
por: Dokuchaev, Arsenii, et al.
Publicado: (2023) -
Generative adversarial networks for construction of virtual populations of mechanistic models: simulations to study Omecamtiv Mecarbil action
por: Parikh, Jaimit, et al.
Publicado: (2021) -
Novel and flexible parameter estimation methods for data-consistent inversion in mechanistic modelling
por: Rumbell, Timothy, et al.
Publicado: (2023)