Cargando…
Cocaine- and amphetamine-regulated transcript (CART) is associated with dopamine and is protective against ischemic stroke
Cocaine and amphetamine-regulated transcript (CART) is a neuropeptide that can protect brains against ischemic injury. The aim of the present study was to investigate the effects of the CART within ischemic stroke and it possible mechanism. The expression levels of dopamine (DA) and CART in ischemic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102650/ https://www.ncbi.nlm.nih.gov/pubmed/30066844 http://dx.doi.org/10.3892/mmr.2018.9296 |
Sumario: | Cocaine and amphetamine-regulated transcript (CART) is a neuropeptide that can protect brains against ischemic injury. The aim of the present study was to investigate the effects of the CART within ischemic stroke and it possible mechanism. The expression levels of dopamine (DA) and CART in ischemic brain tissues of mice were measured following middle cerebral artery occlusion (MCAO). After receiving the treatment of DA and CART, the infarct volume of brain was measured in mice with MCAO. In addition, the function and potential mechanism of CART in ischemic stroke were further investigated. DA and CART expression was significantly decreased in mice with MCAO compared with normal control mice. Treatment of mice with MCAO with exogenous CART significantly decreased the extent of brain injury compared with untreated mice with MCAO. Treatment with exogenous CART promoted the survival of ex vivo neurons following oxygen-glucose deprivation (OGD), while exogenous DA induced CART mRNA expression in a dose-dependent manner, which suggested an association between CART and DA. Apoptosis of ex vivo neurons was significantly increased following OGD, however treatment with exogenous CART significantly inhibited this effect. The potential mechanism of CART was determined to be associated with inflammatory cytokines and related apoptotic genes. CART therefore appears to be associated with DA in its effect on ischemic stroke and is protective against brain injury following ischemic stroke by reducing inflammation activation; it may provide a promising means to treat ischemic stroke patients. |
---|