Cargando…

MiR-500a-5p promotes glioblastoma cell proliferation, migration and invasion by targeting chromodomain helicase DNA binding protein 5

Glioblastoma is one of the most common malignant primary tumors and develops in brain. The molecular mechanism that regulates glioblastoma occurrence still remains unknown. MicroRNA (miR)-500a-5p has been reported to be involved in hepatocellular carcinoma and breast cancer. Whether miR-500a-5p regu...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhiyong, Su, Danying, Qi, Xiuying, Ma, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102694/
https://www.ncbi.nlm.nih.gov/pubmed/30015879
http://dx.doi.org/10.3892/mmr.2018.9259
Descripción
Sumario:Glioblastoma is one of the most common malignant primary tumors and develops in brain. The molecular mechanism that regulates glioblastoma occurrence still remains unknown. MicroRNA (miR)-500a-5p has been reported to be involved in hepatocellular carcinoma and breast cancer. Whether miR-500a-5p regulates glioblastoma progression requires further investigation. In the present study, miR-500a-5p was highly expressed in malignant glioblastoma tissues and cell lines. Overexpression of miR-500a-5p promoted glioblastoma cell proliferation, migration and invasion in vitro. In addition, knockdown of miR-500a-5p accelerated cell apoptosis. Furthermore, miR-500a-5p inhibition significantly impaired tumor growth in vivo. The present study further explored the downstream mechanism. The luciferase reporter assay revealed that miR-500a-5p directly binds the 3′-untranslated region of chromodomain helicase DNA binding protein 5 (CHD5) mRNA. MiR-500a-5p markedly inhibited CHD5 expression in glioblastoma cells. Furthermore, CHD5 was downregulated in glioblastoma tissues, and the expression levels of miR-500a-5p and CHD5 were inversely correlated. In addition, knockdown of CHD5 restored the inhibition of cell proliferation and migration triggered by miR-500a-5p silence. Finally, it was demonstrated that miR-500a-5p can serve as a novel biomarker for the diagnosis and prognosis of glioblastoma patients. Taken together, the results of the present study indicated that miR-500a-5p may have promoted glioblastoma development and progression by targeting CHD5.