Cargando…
MetaBinG2: a fast and accurate metagenomic sequence classification system for samples with many unknown organisms
BACKGROUND: Many methods have been developed for metagenomic sequence classification, and most of them depend heavily on genome sequences of the known organisms. A large portion of sequencing sequences may be classified as unknown, which greatly impairs our understanding of the whole sample. RESULT:...
Autores principales: | Qiao, Yuyang, Jia, Ben, Hu, Zhiqiang, Sun, Chen, Xiang, Yijin, Wei, Chaochun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104016/ https://www.ncbi.nlm.nih.gov/pubmed/30134953 http://dx.doi.org/10.1186/s13062-018-0220-y |
Ejemplares similares
-
MetaBinG: Using GPUs to Accelerate Metagenomic Sequence Classification
por: Jia, Peng, et al.
Publicado: (2011) -
Fast and Accurate Taxonomic Assignments of Metagenomic Sequences Using MetaBin
por: Sharma, Vineet K., et al.
Publicado: (2012) -
Protocol for refining metagenomic binning with BinSPreader
por: Ochkalova, Sofia, et al.
Publicado: (2023) -
MAGScoT: a fast, lightweight and accurate bin-refinement tool
por: Rühlemann, Malte Christoph, et al.
Publicado: (2022) -
BugSplit enables genome-resolved metagenomics through highly accurate taxonomic binning of metagenomic assemblies
por: Chandrakumar, Induja, et al.
Publicado: (2022)