Cargando…

Experimental studies on effects of temperature on oil and water relative permeability in heavy-oil reservoirs

A heavy-oil sample derived from a block of Venezuelan oil was used to investigate effects of temperature on relative permeability to oil and water. Measurements of relative permeability were based on one-dimensional core-flow simulated systems using an unsteady-state technique at different temperatu...

Descripción completa

Detalles Bibliográficos
Autores principales: Qin, Yadong, Wu, Yongbin, Liu, Pengcheng, Zhao, Fajun, Yuan, Zhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104034/
https://www.ncbi.nlm.nih.gov/pubmed/30131567
http://dx.doi.org/10.1038/s41598-018-31044-x
Descripción
Sumario:A heavy-oil sample derived from a block of Venezuelan oil was used to investigate effects of temperature on relative permeability to oil and water. Measurements of relative permeability were based on one-dimensional core-flow simulated systems using an unsteady-state technique at different temperatures, and then impact rules of temperature dependency were discussed. Both water and heavy oil in cores were reconfigured under the consideration of actual reservoir conditions. Study results suggest that relative permeability is high to oil phase and is very low to water phase, and fluid flow capability is extremely imbalanced between oil and water. As temperature increases, irreducible water saturation linearly increases, residual oil saturation performs a nonlinear decrease, and water saturation exhibits a nonlinear increase at equal-permeability points. The water-wettability of rocks is heightened and overall relative permeability curves shift to the right with increasing temperature; furthermore, two-phase flow area becomes wider and both oil and water relative permeability increases apparently, but the increase ratio of water is less than that of oil.