Cargando…

Significant dose reduction using synchrotron radiation computed tomography: first clinical case and application to high resolution CT exams

Since the invention of Computed Tomography (CT), many technological advances emerged to improve the image sensitivity and resolution. However, no new source types were developed for clinical use. In this study, for the first time, coherent monochromatic X-rays from a synchrotron radiation source wer...

Descripción completa

Detalles Bibliográficos
Autores principales: Labriet, H., Nemoz, C., Renier, M., Berkvens, P., Brochard, T., Cassagne, R., Elleaume, H., Estève, F., Verry, C., Balosso, J., Adam, J. F., Brun, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104060/
https://www.ncbi.nlm.nih.gov/pubmed/30131501
http://dx.doi.org/10.1038/s41598-018-30902-y
Descripción
Sumario:Since the invention of Computed Tomography (CT), many technological advances emerged to improve the image sensitivity and resolution. However, no new source types were developed for clinical use. In this study, for the first time, coherent monochromatic X-rays from a synchrotron radiation source were used to acquire 3D CTs on patients. The aim of this work was to evaluate the clinical potential of the images acquired using Synchrotron Radiation CT (SRCT). SRCTs were acquired using monochromatic X-rays tuned at 80 keV (0.350 × 0.350 × 2 mm(3) voxel size). A quantitative image quality comparison study was carried out on phantoms between a state of the art clinical CT and SRCT images. Dedicated iterative algorithms were developed to optimize the image quality and further reduce the delivered dose by a factor of 12 while keeping a better image quality than the one obtained with a clinical CT scanner. We finally show in this paper the very first SRCT results of one patient who received Synchrotron Radiotherapy in an ongoing clinical trial. This demonstrates the potential of the technique in terms of image quality improvement at a reduced radiation dose for inner ear visualization.