Cargando…
Prediction of Pseudoprogression versus Progression using Machine Learning Algorithm in Glioblastoma
We aimed to investigate the feasibility of machine learning (ML) algorithm to distinguish pseudoprogression (PsPD) from progression (PD) in patients with glioblastoma (GBM). We recruited the patients diagnosed as primary GBM who received gross total resection (GTR) and concurrent chemoradiotherapy i...
Autores principales: | Jang, Bum-Sup, Jeon, Seung Hyuck, Kim, Il Han, Kim, In Ah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104063/ https://www.ncbi.nlm.nih.gov/pubmed/30131513 http://dx.doi.org/10.1038/s41598-018-31007-2 |
Ejemplares similares
-
Machine Learning Model to Predict Pseudoprogression Versus Progression in Glioblastoma Using MRI: A Multi-Institutional Study (KROG 18-07)
por: Jang, Bum-Sup, et al.
Publicado: (2020) -
True Progression versus Pseudoprogression in the Treatment of Glioblastomas: A Comparison Study of Normalized Cerebral Blood Volume and Apparent Diffusion Coefficient by Histogram Analysis
por: Song, Yong Sub, et al.
Publicado: (2013) -
Pseudoprogression as an adverse event of glioblastoma therapy
por: Balaña, Carmen, et al.
Publicado: (2017) -
The predictive value of absolute lymphocyte counts on tumor progression and pseudoprogression in patients with glioblastoma
por: Xi, Jing, et al.
Publicado: (2021) -
Glioblastoma pseudoprogression and true progression reveal spatially variable transcriptional differences
por: Wang, Wesley, et al.
Publicado: (2023)