Cargando…

Perceptual Expectations of Object Stimuli Modulate Repetition Suppression in a Delayed Repetition Design

Several fMRI and EEG/MEG studies show that repetition suppression (RS) effects are stronger when a stimulus repetition is expected compared to when a stimulus repetition is less expected. To date, the prevalent way to assess the influence of expectations on RS is via immediate stimulus repetition de...

Descripción completa

Detalles Bibliográficos
Autores principales: Kronbichler, Lisa, Said-Yürekli, Sarah, Kronbichler, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104074/
https://www.ncbi.nlm.nih.gov/pubmed/30131582
http://dx.doi.org/10.1038/s41598-018-31091-4
Descripción
Sumario:Several fMRI and EEG/MEG studies show that repetition suppression (RS) effects are stronger when a stimulus repetition is expected compared to when a stimulus repetition is less expected. To date, the prevalent way to assess the influence of expectations on RS is via immediate stimulus repetition designs, that is, no intervening stimuli appear between the initial and repeated presentation of a stimulus. Since there is evidence that repetition lag may alter RS effects in a qualitative manner, the current study investigated how perceptual expectations modify RS effects on object stimuli when repetition lag is relatively long. Region of interest analyses in the left occipital cortex revealed a similar activation pattern as identified in previous studies on immediate lag: RS effects were strongest when repetitions were expected compared to decreased RS effects when repetitions were less expected. Therefore, the current study expands previous research in two ways: First, we replicate prior studies showing that perceptual expectation effects can be observed in object-sensitive occipital areas. Second, the finding that expectation effects can be found even for several-minute lags proposes that Bayesian inference processes are a relatively robust component in visual stimulus processing.