Cargando…
Diversity and Ice Nucleation Activity of Microorganisms Collected With a Small Unmanned Aircraft System (sUAS) in France and the United States
Many microbes relevant to crops, domestic animals, and humans are transported over long distances through the atmosphere. Some of these atmospheric microbes catalyze the freezing of water at higher temperatures and facilitate the onset of precipitation. We collected microbes from the lower atmospher...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104180/ https://www.ncbi.nlm.nih.gov/pubmed/30158903 http://dx.doi.org/10.3389/fmicb.2018.01667 |
_version_ | 1783349442447933440 |
---|---|
author | Jimenez-Sanchez, Celia Hanlon, Regina Aho, Ken A. Powers, Craig Morris, Cindy E. Schmale, David G. |
author_facet | Jimenez-Sanchez, Celia Hanlon, Regina Aho, Ken A. Powers, Craig Morris, Cindy E. Schmale, David G. |
author_sort | Jimenez-Sanchez, Celia |
collection | PubMed |
description | Many microbes relevant to crops, domestic animals, and humans are transported over long distances through the atmosphere. Some of these atmospheric microbes catalyze the freezing of water at higher temperatures and facilitate the onset of precipitation. We collected microbes from the lower atmosphere in France and the United States with a small unmanned aircraft system (sUAS). 55 sampling missions were conducted at two locations in France in 2014 (an airfield in Pujaut, and the top of Puy de Dôme), and three locations in the U.S. in 2015 (a farm in Blacksburg, Virginia, and a farm and a lake in Baton Rouge, Louisiana). The sUAS was a fixed-wing electric drone equipped with a remote-operated sampling device that was opened once the aircraft reached the desired sampling altitude (40–50 meters above ground level). Samples were collected on agar media (TSA, R4A, R2A, and CA) with and without the fungicide cycloheximide. Over 4,000 bacterial-like colonies were recovered across the 55 sUAS sampling missions. A positive relationship between sampling time and temperature and concentrations of culturable bacteria was observed for sUAS flights conducted in France, but not for sUAS flights conducted in Louisiana. A droplet freezing assay was used to screen nearly 2,000 colonies for ice nucleation activity, and 15 colonies were ice nucleation active at temperatures warmer than −8°C. Sequences from portions of 16S rDNA were used to identify 503 colonies from 54 flights to the level of genus. Assemblages of bacteria from sUAS flights in France (TSA) and sUAS flights in Louisiana (R4A) showed more similarity within locations than between locations. Bacteria collected with sUAS on TSA in France and Virginia were significantly different across all levels of classification tested (P < 0.001 for class, order, family, and genus). Principal Coordinates Analysis showed a strong association between the genera Curtobacterium, Pantoea, and Pseudomonas from sUAS flights in Virginia, and Agrococcus, Lysinibacillus, and Paenibacillus from sUAS flights in France. Future work aims to understand the potential origin of the atmospheric microbial assemblages collected with sUAS, and their association with mesoscale atmospheric processes. |
format | Online Article Text |
id | pubmed-6104180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61041802018-08-29 Diversity and Ice Nucleation Activity of Microorganisms Collected With a Small Unmanned Aircraft System (sUAS) in France and the United States Jimenez-Sanchez, Celia Hanlon, Regina Aho, Ken A. Powers, Craig Morris, Cindy E. Schmale, David G. Front Microbiol Microbiology Many microbes relevant to crops, domestic animals, and humans are transported over long distances through the atmosphere. Some of these atmospheric microbes catalyze the freezing of water at higher temperatures and facilitate the onset of precipitation. We collected microbes from the lower atmosphere in France and the United States with a small unmanned aircraft system (sUAS). 55 sampling missions were conducted at two locations in France in 2014 (an airfield in Pujaut, and the top of Puy de Dôme), and three locations in the U.S. in 2015 (a farm in Blacksburg, Virginia, and a farm and a lake in Baton Rouge, Louisiana). The sUAS was a fixed-wing electric drone equipped with a remote-operated sampling device that was opened once the aircraft reached the desired sampling altitude (40–50 meters above ground level). Samples were collected on agar media (TSA, R4A, R2A, and CA) with and without the fungicide cycloheximide. Over 4,000 bacterial-like colonies were recovered across the 55 sUAS sampling missions. A positive relationship between sampling time and temperature and concentrations of culturable bacteria was observed for sUAS flights conducted in France, but not for sUAS flights conducted in Louisiana. A droplet freezing assay was used to screen nearly 2,000 colonies for ice nucleation activity, and 15 colonies were ice nucleation active at temperatures warmer than −8°C. Sequences from portions of 16S rDNA were used to identify 503 colonies from 54 flights to the level of genus. Assemblages of bacteria from sUAS flights in France (TSA) and sUAS flights in Louisiana (R4A) showed more similarity within locations than between locations. Bacteria collected with sUAS on TSA in France and Virginia were significantly different across all levels of classification tested (P < 0.001 for class, order, family, and genus). Principal Coordinates Analysis showed a strong association between the genera Curtobacterium, Pantoea, and Pseudomonas from sUAS flights in Virginia, and Agrococcus, Lysinibacillus, and Paenibacillus from sUAS flights in France. Future work aims to understand the potential origin of the atmospheric microbial assemblages collected with sUAS, and their association with mesoscale atmospheric processes. Frontiers Media S.A. 2018-08-15 /pmc/articles/PMC6104180/ /pubmed/30158903 http://dx.doi.org/10.3389/fmicb.2018.01667 Text en Copyright © 2018 Jimenez-Sanchez, Hanlon, Aho, Powers, Morris and Schmale. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Jimenez-Sanchez, Celia Hanlon, Regina Aho, Ken A. Powers, Craig Morris, Cindy E. Schmale, David G. Diversity and Ice Nucleation Activity of Microorganisms Collected With a Small Unmanned Aircraft System (sUAS) in France and the United States |
title | Diversity and Ice Nucleation Activity of Microorganisms Collected With a Small Unmanned Aircraft System (sUAS) in France and the United States |
title_full | Diversity and Ice Nucleation Activity of Microorganisms Collected With a Small Unmanned Aircraft System (sUAS) in France and the United States |
title_fullStr | Diversity and Ice Nucleation Activity of Microorganisms Collected With a Small Unmanned Aircraft System (sUAS) in France and the United States |
title_full_unstemmed | Diversity and Ice Nucleation Activity of Microorganisms Collected With a Small Unmanned Aircraft System (sUAS) in France and the United States |
title_short | Diversity and Ice Nucleation Activity of Microorganisms Collected With a Small Unmanned Aircraft System (sUAS) in France and the United States |
title_sort | diversity and ice nucleation activity of microorganisms collected with a small unmanned aircraft system (suas) in france and the united states |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104180/ https://www.ncbi.nlm.nih.gov/pubmed/30158903 http://dx.doi.org/10.3389/fmicb.2018.01667 |
work_keys_str_mv | AT jimenezsanchezcelia diversityandicenucleationactivityofmicroorganismscollectedwithasmallunmannedaircraftsystemsuasinfranceandtheunitedstates AT hanlonregina diversityandicenucleationactivityofmicroorganismscollectedwithasmallunmannedaircraftsystemsuasinfranceandtheunitedstates AT ahokena diversityandicenucleationactivityofmicroorganismscollectedwithasmallunmannedaircraftsystemsuasinfranceandtheunitedstates AT powerscraig diversityandicenucleationactivityofmicroorganismscollectedwithasmallunmannedaircraftsystemsuasinfranceandtheunitedstates AT morriscindye diversityandicenucleationactivityofmicroorganismscollectedwithasmallunmannedaircraftsystemsuasinfranceandtheunitedstates AT schmaledavidg diversityandicenucleationactivityofmicroorganismscollectedwithasmallunmannedaircraftsystemsuasinfranceandtheunitedstates |