Cargando…
Sparse Ordinal Logistic Regression and Its Application to Brain Decoding
Brain decoding with multivariate classification and regression has provided a powerful framework for characterizing information encoded in population neural activity. Classification and regression models are respectively used to predict discrete and continuous variables of interest. However, cogniti...
Autores principales: | Satake, Emi, Majima, Kei, Aoki, Shuntaro C., Kamitani, Yukiyasu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104194/ https://www.ncbi.nlm.nih.gov/pubmed/30158864 http://dx.doi.org/10.3389/fninf.2018.00051 |
Ejemplares similares
-
Brain hierarchy score: Which deep neural networks are hierarchically brain-like?
por: Nonaka, Soma, et al.
Publicado: (2021) -
Reconstructing visual illusory experiences from human brain activity
por: Cheng, Fan L., et al.
Publicado: (2023) -
BrainLiner: A Neuroinformatics Platform for Sharing Time-Aligned Brain-Behavior Data
por: Takemiya, Makoto, et al.
Publicado: (2016) -
Characterization of deep neural network features by decodability from human brain activity
por: Horikawa, Tomoyasu, et al.
Publicado: (2019) -
Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features
por: Horikawa, Tomoyasu, et al.
Publicado: (2017)