Cargando…
Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines
The widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neuronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are homogeneous across the brain. However, the br...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104304/ https://www.ncbi.nlm.nih.gov/pubmed/30037827 http://dx.doi.org/10.1523/JNEUROSCI.0514-18.2018 |
_version_ | 1783349461496365056 |
---|---|
author | van den Brink, Ruud L. Nieuwenhuis, Sander Donner, Tobias H. |
author_facet | van den Brink, Ruud L. Nieuwenhuis, Sander Donner, Tobias H. |
author_sort | van den Brink, Ruud L. |
collection | PubMed |
description | The widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neuronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are homogeneous across the brain. However, the brain is equipped with a variety of catecholamine receptors with distinct functional effects and heterogeneous density across brain regions. Consequently, catecholaminergic effects on brainwide network dynamics might be more spatially specific than assumed. We tested this idea through the analysis of fMRI measurements performed in humans (19 females, 5 males) at “rest” under pharmacological (atomoxetine-induced) elevation of catecholamine levels. We used a linear decomposition technique to identify spatial patterns of correlated fMRI signal fluctuations that were either increased or decreased by atomoxetine. This yielded two distinct spatial patterns, each expressing reliable and specific drug effects. The spatial structure of both fluctuation patterns resembled the spatial distribution of the expression of catecholamine receptor genes: α(1) norepinephrine receptors (for the fluctuation pattern: placebo > atomoxetine), D(2)-like dopamine receptors (pattern: atomoxetine > placebo), and β norepinephrine receptors (for both patterns, with correlations of opposite sign). We conclude that catecholaminergic effects on the forebrain are spatially more structured than traditionally assumed and at least in part explained by the heterogeneous distribution of various catecholamine receptors. Our findings link catecholaminergic effects on large-scale brain networks to low-level characteristics of the underlying neurotransmitter systems. They also provide key constraints for the development of realistic models of neuromodulatory effects on large-scale brain network dynamics. SIGNIFICANCE STATEMENT The catecholamines norepinephrine and dopamine are an important class of modulatory neurotransmitters. Because of the widespread and diffuse release of these neuromodulators, it has commonly been assumed that their effects on neural interactions are homogeneous across the brain. Here, we present results from the human brain that challenge this view. We pharmacologically increased catecholamine levels and imaged the effects on the spontaneous covariations between brainwide fMRI signals at “rest.” We identified two distinct spatial patterns of covariations: one that was amplified and another that was suppressed by catecholamines. Each pattern was associated with the heterogeneous spatial distribution of the expression of distinct catecholamine receptor genes. Our results provide novel insights into the catecholaminergic modulation of large-scale human brain dynamics. |
format | Online Article Text |
id | pubmed-6104304 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-61043042018-08-28 Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines van den Brink, Ruud L. Nieuwenhuis, Sander Donner, Tobias H. J Neurosci Research Articles The widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neuronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are homogeneous across the brain. However, the brain is equipped with a variety of catecholamine receptors with distinct functional effects and heterogeneous density across brain regions. Consequently, catecholaminergic effects on brainwide network dynamics might be more spatially specific than assumed. We tested this idea through the analysis of fMRI measurements performed in humans (19 females, 5 males) at “rest” under pharmacological (atomoxetine-induced) elevation of catecholamine levels. We used a linear decomposition technique to identify spatial patterns of correlated fMRI signal fluctuations that were either increased or decreased by atomoxetine. This yielded two distinct spatial patterns, each expressing reliable and specific drug effects. The spatial structure of both fluctuation patterns resembled the spatial distribution of the expression of catecholamine receptor genes: α(1) norepinephrine receptors (for the fluctuation pattern: placebo > atomoxetine), D(2)-like dopamine receptors (pattern: atomoxetine > placebo), and β norepinephrine receptors (for both patterns, with correlations of opposite sign). We conclude that catecholaminergic effects on the forebrain are spatially more structured than traditionally assumed and at least in part explained by the heterogeneous distribution of various catecholamine receptors. Our findings link catecholaminergic effects on large-scale brain networks to low-level characteristics of the underlying neurotransmitter systems. They also provide key constraints for the development of realistic models of neuromodulatory effects on large-scale brain network dynamics. SIGNIFICANCE STATEMENT The catecholamines norepinephrine and dopamine are an important class of modulatory neurotransmitters. Because of the widespread and diffuse release of these neuromodulators, it has commonly been assumed that their effects on neural interactions are homogeneous across the brain. Here, we present results from the human brain that challenge this view. We pharmacologically increased catecholamine levels and imaged the effects on the spontaneous covariations between brainwide fMRI signals at “rest.” We identified two distinct spatial patterns of covariations: one that was amplified and another that was suppressed by catecholamines. Each pattern was associated with the heterogeneous spatial distribution of the expression of distinct catecholamine receptor genes. Our results provide novel insights into the catecholaminergic modulation of large-scale human brain dynamics. Society for Neuroscience 2018-08-22 /pmc/articles/PMC6104304/ /pubmed/30037827 http://dx.doi.org/10.1523/JNEUROSCI.0514-18.2018 Text en Copyright © 2018 van den Brink et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Articles van den Brink, Ruud L. Nieuwenhuis, Sander Donner, Tobias H. Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines |
title | Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines |
title_full | Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines |
title_fullStr | Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines |
title_full_unstemmed | Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines |
title_short | Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines |
title_sort | amplification and suppression of distinct brainwide activity patterns by catecholamines |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104304/ https://www.ncbi.nlm.nih.gov/pubmed/30037827 http://dx.doi.org/10.1523/JNEUROSCI.0514-18.2018 |
work_keys_str_mv | AT vandenbrinkruudl amplificationandsuppressionofdistinctbrainwideactivitypatternsbycatecholamines AT nieuwenhuissander amplificationandsuppressionofdistinctbrainwideactivitypatternsbycatecholamines AT donnertobiash amplificationandsuppressionofdistinctbrainwideactivitypatternsbycatecholamines |