Cargando…
Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory
Efforts are increasingly being made to classify the world’s wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree (DT), rule-based (RB), an...
Autores principales: | Berhane, Tedros M., Lane, Charles R., Wu, Qiusheng, Autrey, Bradley C., Anenkhonov, Oleg A., Chepinoga, Victor V., Liu, Hongxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104403/ https://www.ncbi.nlm.nih.gov/pubmed/30147945 http://dx.doi.org/10.3390/rs10040580 |
Ejemplares similares
-
Comparing Pixel- and Object-Based Approaches in Effectively Classifying Wetland-Dominated Landscapes
por: Berhane, Tedros M., et al.
Publicado: (2018) -
The Influence of Region of Interest Heterogeneity on Classification Accuracy in Wetland Systems
por: Berhane, Tedros M., et al.
Publicado: (2019) -
Reclamation and Ecological Service Value Evaluation of Coastal Wetlands Using Multispectral Satellite Imagery
por: Yan, Jinfeng, et al.
Publicado: (2022) -
Integrating high resolution drone imagery and forest inventory to distinguish canopy and understory trees and quantify their contributions to forest structure and dynamics
por: Araujo, Raquel Fernandes, et al.
Publicado: (2020) -
Detecting Pest-Infested Forest Damage through Multispectral Satellite Imagery and Improved UNet++
por: Zhang, Jingzong, et al.
Publicado: (2022)