Cargando…
The effects of phenolic glycosides from Betula platyphylla var. japonica on adipocyte differentiation and mature adipocyte metabolism
Betula platyphylla var. japonica (Betulaceae) has been used traditionally in Asian countries for the treatment of inflammatory diseases. A recent study has reported a phenolic compound, platyphylloside from B. platyphylla, that shows inhibition on adipocyte differentiation and induces lipolysis in 3...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104606/ https://www.ncbi.nlm.nih.gov/pubmed/30126307 http://dx.doi.org/10.1080/14756366.2018.1491846 |
Sumario: | Betula platyphylla var. japonica (Betulaceae) has been used traditionally in Asian countries for the treatment of inflammatory diseases. A recent study has reported a phenolic compound, platyphylloside from B. platyphylla, that shows inhibition on adipocyte differentiation and induces lipolysis in 3T3-L1 cells. Based on this finding, we conducted phytochemical analysis of the EtOH extract of the bark of B. platyphylla var. japonica, which resulted in the isolation of phenolic glycosides (1–4). Treatment of the isolated compounds (1–4) during adipocyte differentiation of 3T3-L1 mouse adipocytes resulted in dose-dependent inhibition of adipogenesis. In mature adipocytes, arylbutanoid glycosides (2–4) induced lipolysis related genes HSL and ATGL, whereas catechin glycoside (1) had no effect. Additionally, arylbutanoid glycosides (2–4) also induced GLUT4 and adiponectin mRNA expression, indicating improvement in insulin signaling. This suggests that the isolates from B. platyphylla var. japonica exert benefial effects in regulation of adipocyte differentiation as well as adipocyte metabolism. |
---|