Cargando…
A simple lightning assimilation technique for improving retrospective WRF simulations
Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convecti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104844/ https://www.ncbi.nlm.nih.gov/pubmed/30147837 http://dx.doi.org/10.1002/2016MS000735 |
_version_ | 1783349560529125376 |
---|---|
author | Heath, Nicholas K. Pleim, Jonathan E. Gilliam, Robert C. Kang, Daiwen |
author_facet | Heath, Nicholas K. Pleim, Jonathan E. Gilliam, Robert C. Kang, Daiwen |
author_sort | Heath, Nicholas K. |
collection | PubMed |
description | Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. |
format | Online Article Text |
id | pubmed-6104844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-61048442018-08-22 A simple lightning assimilation technique for improving retrospective WRF simulations Heath, Nicholas K. Pleim, Jonathan E. Gilliam, Robert C. Kang, Daiwen J Adv Model Earth Syst Article Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. 2016-12 /pmc/articles/PMC6104844/ /pubmed/30147837 http://dx.doi.org/10.1002/2016MS000735 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Article Heath, Nicholas K. Pleim, Jonathan E. Gilliam, Robert C. Kang, Daiwen A simple lightning assimilation technique for improving retrospective WRF simulations |
title | A simple lightning assimilation technique for improving retrospective WRF simulations |
title_full | A simple lightning assimilation technique for improving retrospective WRF simulations |
title_fullStr | A simple lightning assimilation technique for improving retrospective WRF simulations |
title_full_unstemmed | A simple lightning assimilation technique for improving retrospective WRF simulations |
title_short | A simple lightning assimilation technique for improving retrospective WRF simulations |
title_sort | simple lightning assimilation technique for improving retrospective wrf simulations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104844/ https://www.ncbi.nlm.nih.gov/pubmed/30147837 http://dx.doi.org/10.1002/2016MS000735 |
work_keys_str_mv | AT heathnicholask asimplelightningassimilationtechniqueforimprovingretrospectivewrfsimulations AT pleimjonathane asimplelightningassimilationtechniqueforimprovingretrospectivewrfsimulations AT gilliamrobertc asimplelightningassimilationtechniqueforimprovingretrospectivewrfsimulations AT kangdaiwen asimplelightningassimilationtechniqueforimprovingretrospectivewrfsimulations AT heathnicholask simplelightningassimilationtechniqueforimprovingretrospectivewrfsimulations AT pleimjonathane simplelightningassimilationtechniqueforimprovingretrospectivewrfsimulations AT gilliamrobertc simplelightningassimilationtechniqueforimprovingretrospectivewrfsimulations AT kangdaiwen simplelightningassimilationtechniqueforimprovingretrospectivewrfsimulations |