Cargando…
Hierarchical bi-directional attention-based RNNs for supporting document classification on protein–protein interactions affected by genetic mutations
In this paper, we describe a hierarchical bi-directional attention-based Re-current Neural Network (RNN) as a reusable sequence encoder architecture, which is used as sentence and document encoder for document classification. The sequence encoder is composed of two bi-directional RNN equipped with a...
Autores principales: | Fergadis, Aris, Baziotis, Christos, Pappas, Dimitris, Papageorgiou, Haris, Potamianos, Alexandros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105093/ https://www.ncbi.nlm.nih.gov/pubmed/30137284 http://dx.doi.org/10.1093/database/bay076 |
Ejemplares similares
-
Sense classification of shallow discourse relations with focused RNNs
por: Weiss, Gregor, et al.
Publicado: (2018) -
Sparse RNNs can support high-capacity classification
por: Turcu, Denis, et al.
Publicado: (2022) -
Drug–drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths
por: Zhang, Yijia, et al.
Publicado: (2018) -
Particle-Level Event Classification for LHC Trigger, with End-to-End Sorting RNNs
por: Weitekamp, Daniel Phillip
Publicado: (2017) -
Invited talk: Overview, RNNs and alike in HEP
por: Cranmer, Kyle Stuart
Publicado: (2018)