Cargando…

Internal Carotid Artery Stenosis and Collateral Recruitment in Stroke Patients

PURPOSE: Leptomeningeal collaterals improve outcome in stroke patients. There is great individual variability in their extent. Internal carotid artery (ICA) stenosis may lead to more extensive recruitment of leptomeningeal collaterals. The purpose of this study was to evaluate the association of pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Dankbaar, Jan W., Kerckhoffs, Kelly G. P., Horsch, Alexander D., van der Schaaf, Irene C., Kappelle, L. Jaap, Velthuis, Birgitta K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105168/
https://www.ncbi.nlm.nih.gov/pubmed/28439614
http://dx.doi.org/10.1007/s00062-017-0568-x
Descripción
Sumario:PURPOSE: Leptomeningeal collaterals improve outcome in stroke patients. There is great individual variability in their extent. Internal carotid artery (ICA) stenosis may lead to more extensive recruitment of leptomeningeal collaterals. The purpose of this study was to evaluate the association of pre-existing ICA stenosis with leptomeningeal collateral filling visualized with computed tomography perfusion (CTP). METHODS: From a prospective acute ischemic stroke cohort, patients were included with an M1 middle cerebral artery (MCA) occlusion and absent ipsilateral, extracranial ICA occlusion. ICA stenosis was determined on admission CT angiography (CTA). Leptomeningeal collaterals were graded as good (>50%) or poor (≤50%) collateral filling in the affected MCA territory on CTP-derived vessel images of the admission scan. The association between ipsilateral ICA stenosis ≥70% and extent of collateral filling was analyzed using logistic regression. In a multivariable analysis the odds ratio (OR) of ICA stenosis ≥70% was adjusted for complete circle of Willis, gender and age. RESULTS: We included 188 patients in our analyses, 50 (26.6%) patients were classified as having poor collateral filling and 138 (73.4%) as good. Of the patients 4 with poor collateral filling had an ICA stenosis ≥70% and 14 with good collateral filling. Unadjusted and adjusted ORs of ICA stenosis ≥70% for good collateral filling were 1.30 (0.41–4.15) and 2.67 (0.81–8.77), respectively. Patients with poor collateral filling had a significantly worse outcome (90-day modified Rankin scale 3–6; 80% versus 52%, p = 0.001). CONCLUSION: No association was found between pre-existing ICA stenosis and extent of CTP derived collateral filling in patients with an M1 occlusion.