Cargando…

Phyllostachys edulis forest reduces atmospheric PM(2.5) and PAHs on hazy days at suburban area

This study is aim to illustrate Phyllostachys edulis’ role in affecting air quality under hazy day and solar day. P. edulis is a crucial plants growing well at suburban area at China Southern. In this manuscript, on 2 weather conditions (hazy day; solar day), changes in atmospheric particulate matte...

Descripción completa

Detalles Bibliográficos
Autores principales: Bi, Yu Fang, Guo, Fei Yan, Yang, Liu, Zhong, Hao, Wang, An Ke, Wang, Yu Kui, Wu, Zhi Zhuang, Du, Xu Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105635/
https://www.ncbi.nlm.nih.gov/pubmed/30135438
http://dx.doi.org/10.1038/s41598-018-30298-9
Descripción
Sumario:This study is aim to illustrate Phyllostachys edulis’ role in affecting air quality under hazy day and solar day. P. edulis is a crucial plants growing well at suburban area at China Southern. In this manuscript, on 2 weather conditions (hazy day; solar day), changes in atmospheric particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), associated volatile organic compounds (VOCs), and PAHs in leaves and soils were measured, with PM-detection equipment and the GC-MC method, in a typical bamboo forest at suburban areas. The results showed that: (1) Bamboo forest decreased atmospheric PM(2.5) and PM(10) concentrations significantly by 20% and 15%, respectively, on the hazy day nightfall time, when they were times higher than that on any other time. Also, similar effects on atmospheric PAHs and VOCs were found. (2) Significant increases in PAHs of leaves and soil were found inside the forest on the hazy day. (3) Bamboo forest also reduced the atmospheric VOC concentrations, and changed the compounds of 10 VOCs present in the highest concentration list. Thus, bamboo forests strongly regulate atmospheric PM(2.5) through capture or retention, for the changes in atmospheric VOCs and increase in PAHs of leaves and soil.