Cargando…

Evaluation of standard field and laboratory methods to compare protection times of the topical repellents PMD and DEET

Mosquitoes are important vectors of pathogens, and travellers to disease endemic countries are advised to avoid bites by applying topical repellents. Topical repellents are typically tested either in the arm-in-cage (AIC) test under laboratory conditions or in the field, but not often under both con...

Descripción completa

Detalles Bibliográficos
Autores principales: Colucci, Barbara, Müller, Pie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105713/
https://www.ncbi.nlm.nih.gov/pubmed/30135603
http://dx.doi.org/10.1038/s41598-018-30998-2
Descripción
Sumario:Mosquitoes are important vectors of pathogens, and travellers to disease endemic countries are advised to avoid bites by applying topical repellents. Topical repellents are typically tested either in the arm-in-cage (AIC) test under laboratory conditions or in the field, but not often under both conditions. We, therefore, investigated how two topical repellents, 15% para-menthane-3,8-diol (PMD) and 15% N,N-diethyl-3-methylbenzamide (DEET) compare against each other both in the AIC test against three species recommended by the World Health Organization (i.e. Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus) and at two field sites in Switzerland, while using the same study participants in all experiments. In the field, the median complete protection time (CPT) was at least 6 hours for both PMD and DEET, while in the AIC test DEET slightly outperformed PMD. CPTs for DEET in the AIC test were 0.5, 2 and 2 hours against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, respectively, and the corresponding median CPTs for PMD were 0.5, 1 and 0.5 hours. In conclusion, DEET slightly outperformed PMD in the AIC test, while the observed landing rates suggest the AIC test to underestimate efficacy of topical repellents in areas with lower landing pressure.