Cargando…
A nonlinear updating algorithm captures suboptimal inference in the presence of signal-dependent noise
Bayesian models have advanced the idea that humans combine prior beliefs and sensory observations to optimize behavior. How the brain implements Bayes-optimal inference, however, remains poorly understood. Simple behavioral tasks suggest that the brain can flexibly represent probability distribution...
Autores principales: | Egger, Seth W., Jazayeri, Mehrdad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105733/ https://www.ncbi.nlm.nih.gov/pubmed/30135441 http://dx.doi.org/10.1038/s41598-018-30722-0 |
Ejemplares similares
-
Human noise blindness drives suboptimal cognitive inference
por: Herce Castañón, Santiago, et al.
Publicado: (2019) -
Bipartite Consensus of Nonlinear Agents in the Presence of Communication Noise
por: Mondal, Sabyasachi, et al.
Publicado: (2022) -
On the Origins of Suboptimality in Human Probabilistic Inference
por: Acerbi, Luigi, et al.
Publicado: (2014) -
Optimal inference with suboptimal models: Addiction and active Bayesian inference
por: Schwartenbeck, Philipp, et al.
Publicado: (2015) -
A neural circuit model for human sensorimotor timing
por: Egger, Seth W., et al.
Publicado: (2020)