Cargando…
From Culturomics to Clinical Microbiology and Forward
Culturomics has permitted discovery of hundreds of new bacterial species isolated from the human microbiome. Profiles generated by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry have been added to the mass spectrometer database used in clinical microbi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106433/ https://www.ncbi.nlm.nih.gov/pubmed/30124405 http://dx.doi.org/10.3201/eid2409.170995 |
_version_ | 1783349778545901568 |
---|---|
author | Dubourg, Grégory Baron, Sophie Cadoret, Frédéric Couderc, Carine Fournier, Pierre-Edouard Lagier, Jean-Christophe Raoult, Didier |
author_facet | Dubourg, Grégory Baron, Sophie Cadoret, Frédéric Couderc, Carine Fournier, Pierre-Edouard Lagier, Jean-Christophe Raoult, Didier |
author_sort | Dubourg, Grégory |
collection | PubMed |
description | Culturomics has permitted discovery of hundreds of new bacterial species isolated from the human microbiome. Profiles generated by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry have been added to the mass spectrometer database used in clinical microbiology laboratories. We retrospectively collected raw data from MALDI-TOF mass spectrometry used routinely in our laboratory in Marseille, France, during January 2012–March 2018 and analyzed 16S rDNA sequencing results from misidentified strains. During the study period, 744 species were identified from clinical specimens, of which 21 were species first isolated from culturomics. This collection involved 105 clinical specimens, accounting for 98 patients. In 64 cases, isolation of the bacteria was considered clinically relevant. MALDI-TOF mass spectrometry was able to identify the species in 95.2% of the 105 specimens. While contributing to the extension of the bacterial repertoire associated with humans, culturomics studies also enlarge the spectrum of prokaryotes involved in infectious diseases. |
format | Online Article Text |
id | pubmed-6106433 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Centers for Disease Control and Prevention |
record_format | MEDLINE/PubMed |
spelling | pubmed-61064332018-09-01 From Culturomics to Clinical Microbiology and Forward Dubourg, Grégory Baron, Sophie Cadoret, Frédéric Couderc, Carine Fournier, Pierre-Edouard Lagier, Jean-Christophe Raoult, Didier Emerg Infect Dis Research Culturomics has permitted discovery of hundreds of new bacterial species isolated from the human microbiome. Profiles generated by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry have been added to the mass spectrometer database used in clinical microbiology laboratories. We retrospectively collected raw data from MALDI-TOF mass spectrometry used routinely in our laboratory in Marseille, France, during January 2012–March 2018 and analyzed 16S rDNA sequencing results from misidentified strains. During the study period, 744 species were identified from clinical specimens, of which 21 were species first isolated from culturomics. This collection involved 105 clinical specimens, accounting for 98 patients. In 64 cases, isolation of the bacteria was considered clinically relevant. MALDI-TOF mass spectrometry was able to identify the species in 95.2% of the 105 specimens. While contributing to the extension of the bacterial repertoire associated with humans, culturomics studies also enlarge the spectrum of prokaryotes involved in infectious diseases. Centers for Disease Control and Prevention 2018-09 /pmc/articles/PMC6106433/ /pubmed/30124405 http://dx.doi.org/10.3201/eid2409.170995 Text en https://creativecommons.org/licenses/by/4.0/This is a publication of the U.S. Government. This publication is in the public domain and is therefore without copyright. All text from this work may be reprinted freely. Use of these materials should be properly cited. |
spellingShingle | Research Dubourg, Grégory Baron, Sophie Cadoret, Frédéric Couderc, Carine Fournier, Pierre-Edouard Lagier, Jean-Christophe Raoult, Didier From Culturomics to Clinical Microbiology and Forward |
title | From Culturomics to Clinical Microbiology and Forward |
title_full | From Culturomics to Clinical Microbiology and Forward |
title_fullStr | From Culturomics to Clinical Microbiology and Forward |
title_full_unstemmed | From Culturomics to Clinical Microbiology and Forward |
title_short | From Culturomics to Clinical Microbiology and Forward |
title_sort | from culturomics to clinical microbiology and forward |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106433/ https://www.ncbi.nlm.nih.gov/pubmed/30124405 http://dx.doi.org/10.3201/eid2409.170995 |
work_keys_str_mv | AT dubourggregory fromculturomicstoclinicalmicrobiologyandforward AT baronsophie fromculturomicstoclinicalmicrobiologyandforward AT cadoretfrederic fromculturomicstoclinicalmicrobiologyandforward AT couderccarine fromculturomicstoclinicalmicrobiologyandforward AT fournierpierreedouard fromculturomicstoclinicalmicrobiologyandforward AT lagierjeanchristophe fromculturomicstoclinicalmicrobiologyandforward AT raoultdidier fromculturomicstoclinicalmicrobiologyandforward |