Cargando…

Protein kinase R-like endoplasmatic reticulum kinase is a mediator of stretch in ventilator-induced lung injury

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe form of lung injury characterized by damage to the epithelial barrier with subsequent pulmonary edema and hypoxic respiratory failure. ARDS is a significant medical problem in intensive care units with associated high care costs. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Dolinay, Tamás, Aonbangkhen, Chanat, Zacharias, William, Cantu, Edward, Pogoriler, Jennifer, Stablow, Alec, Lawrence, Gladys G., Suzuki, Yoshikazu, Chenoweth, David M., Morrisey, Edward, Christie, Jason D., Beers, Michael F., Margulies, Susan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106739/
https://www.ncbi.nlm.nih.gov/pubmed/30134920
http://dx.doi.org/10.1186/s12931-018-0856-2
Descripción
Sumario:BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe form of lung injury characterized by damage to the epithelial barrier with subsequent pulmonary edema and hypoxic respiratory failure. ARDS is a significant medical problem in intensive care units with associated high care costs. There are many potential causes of ARDS; however, alveolar injury associated with mechanical ventilation, termed ventilator-induced lung injury (VILI), remains a well-recognized contributor. It is thus critical to understand the mechanism of VILI. Based on our published preliminary data, we hypothesized that the endoplasmic reticulum (ER) stress response molecule Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) plays a role in transmitting mechanosensory signals the alveolar epithelium. METHODS: ER stress signal responses to mechanical stretch were studied in ex-vivo ventilated pig lungs. To explore the effect of PERK inhibition on VILI, we ventilated live rats and compared lung injury parameters to non-ventilated controls. The effect of stretch-induced epithelial ER Ca(2+) signaling on PERK was studied in stretched alveolar epithelial monolayers. To confirm the activation of PERK in human disease, ER stress signaling was compared between ARDS and non-ARDS lungs. RESULTS: Our studies revealed increased PERK-specific ER stress signaling in response to overstretch. PERK inhibition resulted in dose-dependent improvement of alveolar inflammation and permeability. Our data indicate that stretch-induced epithelial ER Ca(2+) release is an activator of PERK. Experiments with human lung tissue confirmed PERK activation by ARDS. CONCLUSION: Our study provides evidences that PERK is a mediator stretch signals in the alveolar epithelium.