Cargando…

Development of Quantitative Real-Time PCR Assays for Rapid and Sensitive Detection of Two Badnavirus Species in Sugarcane

Sugarcane-infecting badnaviruses (sugarcane bacilliform viruses, SCBVs) represent a genetically heterogeneous species complex, posing a serious threat to the yield and quality of sugarcane in all major producing regions. SCBVs are commonly transmitted across regions by the exchange of sugarcane germ...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Sheng-Ren, Ahmad, Kashif, Wu, Xiao-Bin, Chen, Jian-Sheng, Fu, Hua-Ying, Huang, Mei-Ting, Gao, San-Ji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106854/
https://www.ncbi.nlm.nih.gov/pubmed/30175148
http://dx.doi.org/10.1155/2018/8678242
Descripción
Sumario:Sugarcane-infecting badnaviruses (sugarcane bacilliform viruses, SCBVs) represent a genetically heterogeneous species complex, posing a serious threat to the yield and quality of sugarcane in all major producing regions. SCBVs are commonly transmitted across regions by the exchange of sugarcane germplasm. In this study, we develop two quick, sensitive, and reliable protocols for real-time quantitative PCR (qPCR) of Sugarcane bacilliform MO virus (SCBMOV) and Sugarcane bacilliform IM virus (SCBIMV) using two sets of TaqMan probes and primers targeting the reverse transcriptase/ribonuclease H (RT/RNase H) region. The two assays had a detection limit of 100 copies of plasmid DNA and were 100 times more sensitive than conventional PCR. High specificity of the two assays was observed with respect to SCBIMV and SCBMOV. A total of 176 sugarcane leaf tissue samples from Fujian and Yunnan provinces were collected and analyzed in parallel by conventional PCR, SCBIMV-qPCR, and SCBMOV-qPCR. The SCBIMV-qPCR and SCBMOV-qPCR assays indicated that 50% (88/176) and 47% (83/176) samples tested positive, respectively, whereas only 29% (51/176) tested positive with conventional PCR with the primer pairs SCBV-F and SCBV-R. We demonstrate for the first time that SCBIMV and SCBMOV occur in China and reveal coinfection of both Badnavirus species in 29% (51/176) of tested leaf samples. Our findings supply sensitive and reliable qPCR assays for the detection and quantitation of SCBV in sugarcane quarantine programs.