Cargando…

Bioinformatics Analysis Reveals Most Prominent Gene Candidates to Distinguish Colorectal Adenoma from Adenocarcinoma

Colorectal cancer (CRC) is one of the leading causes of death by cancer worldwide. Bowel cancer screening programs enable us to detect early lesions and improve the prognosis of patients with CRC. However, they also generate a significant number of problematic polyps, e.g., adenomas with epithelial...

Descripción completa

Detalles Bibliográficos
Autores principales: Hauptman, Nina, Boštjančič, Emanuela, Žlajpah, Margareta, Ranković, Branislava, Zidar, Nina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106857/
https://www.ncbi.nlm.nih.gov/pubmed/30175151
http://dx.doi.org/10.1155/2018/9416515
Descripción
Sumario:Colorectal cancer (CRC) is one of the leading causes of death by cancer worldwide. Bowel cancer screening programs enable us to detect early lesions and improve the prognosis of patients with CRC. However, they also generate a significant number of problematic polyps, e.g., adenomas with epithelial misplacement (pseudoinvasion) which can mimic early adenocarcinoma. Therefore, biomarkers that would enable us to distinguish between adenoma with epithelial misplacement (pseudoinvasion) and adenoma with early adenocarcinomas (true invasion) are needed. We hypothesized that the former are genetically similar to adenoma and the latter to adenocarcinoma and we used bioinformatics approach to search for candidate genes that might be potentially used to distinguish between the two lesions. We used publicly available data from Gene Expression Omnibus database and we analyzed gene expression profiles of 252 samples of normal mucosa, colorectal adenoma, and carcinoma. In total, we analyzed 122 colorectal adenomas, 59 colorectal carcinomas, and 62 normal mucosa samples. We have identified 16 genes with differential expression in carcinoma compared to adenoma: COL12A1, COL1A2, COL3A1, DCN, PLAU, SPARC, SPON2, SPP1, SULF1, FADS1, G0S2, EPHA4, KIAA1324, L1TD1, PCKS1, and C11orf96. In conclusion, our in silico analysis revealed 16 candidate genes with different expression patterns in adenoma compared to carcinoma, which might be used to discriminate between these two lesions.