Cargando…

Mechanically reconfigurable architectured graphene for tunable plasmonic resonances

Graphene nanostructures with complex geometries have been widely explored for plasmonic applications, as their plasmonic resonances exhibit high spatial confinement and gate tunability. However, edge effects in graphene and the narrow range over which plasmonic resonances can be tuned have limited t...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Pilgyu, Kim, Kyoung-Ho, Park, Hong-Gyu, Nam, SungWoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106979/
https://www.ncbi.nlm.nih.gov/pubmed/30839518
http://dx.doi.org/10.1038/s41377-018-0002-4
Descripción
Sumario:Graphene nanostructures with complex geometries have been widely explored for plasmonic applications, as their plasmonic resonances exhibit high spatial confinement and gate tunability. However, edge effects in graphene and the narrow range over which plasmonic resonances can be tuned have limited the use of graphene in optical and optoelectronic applications. Here we present a novel approach to achieve mechanically reconfigurable and strongly resonant plasmonic structures based on crumpled graphene. Our calculations show that mechanical reconfiguration of crumpled graphene structures enables broad spectral tunability for plasmonic resonances from mid- to near-infrared, acting as a new tuning knob combined with conventional electrostatic gating. Furthermore, a continuous sheet of crumpled graphene shows strong confinement of plasmons, with a high near-field intensity enhancement of ~1 × 10(4). Finally, decay rates for a dipole emitter are significantly enhanced in the proximity of finite-area biaxially crumpled graphene flakes. Our findings indicate that crumpled graphene provides a platform to engineer graphene-based plasmonics through broadband manipulation of strong plasmonic resonances.