Cargando…

Real-time beam shaping without additional optical elements

Providing artificial light and enhancing the quality of the respective light sources is of continued interest in the fields of solid state, condensed matter, and semiconductor physics. Much research has been carried out to increase the luminous efficiency, lifetime and colour stability of such devic...

Descripción completa

Detalles Bibliográficos
Autores principales: Fries, Felix, Fröbel, Markus, Ang, Pen Yiao, Lenk, Simone, Reineke, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106982/
https://www.ncbi.nlm.nih.gov/pubmed/30839572
http://dx.doi.org/10.1038/s41377-018-0014-0
Descripción
Sumario:Providing artificial light and enhancing the quality of the respective light sources is of continued interest in the fields of solid state, condensed matter, and semiconductor physics. Much research has been carried out to increase the luminous efficiency, lifetime and colour stability of such devices. However, the emission characteristics of a given light source do not necessarily comply with today’s often sophisticated applications. Here, beam shaping addresses the transformation of a given light distribution into a customized form. This is typically achieved by secondary optical elements often sporting elaborate designs, where the actual light source takes up only a small fraction of the system’s volume. Such designs limit the final light source to a single permanent operation mode, which can only be overcome by employing mechanically adjustable optical elements. Here we show that organic light-emitting diodes (OLEDs) can enable real-time regulation of a beam shape without relying on secondary optical elements and without using any mechanical adjustment. For a red light-emitting two-unit OLED architecture, we demonstrate the ability to continuously tune between strongly forward and strongly sideward emission, where the device efficiency is maintained at an application-relevant level ranging between 6 and 8% of external quantum efficiency for any chosen setting. In combination with additional optical elements, customizable and tuneable systems are possible, whereby the tuning stems from the light source itself rather than from the use of secondary optics.