Cargando…

A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes

The recent discovery of gravitational waves (GW) by Advanced LIGO (Laser Interferometric Gravitational-wave Observatory) has impressively launched the novel field of gravitational astronomy and allowed us to glimpse exciting objects about which we could previously only speculate. Further sensitivity...

Descripción completa

Detalles Bibliográficos
Autores principales: Danilishin, Stefan L., Knyazev, Eugene, Voronchev, Nikita V., Khalili, Farid Ya., Gräf, Christian, Steinlechner, Sebastian, Hennig, Jan-Simon, Hild, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107026/
https://www.ncbi.nlm.nih.gov/pubmed/30839613
http://dx.doi.org/10.1038/s41377-018-0004-2
Descripción
Sumario:The recent discovery of gravitational waves (GW) by Advanced LIGO (Laser Interferometric Gravitational-wave Observatory) has impressively launched the novel field of gravitational astronomy and allowed us to glimpse exciting objects about which we could previously only speculate. Further sensitivity improvements at the low-frequency end of the detection band of future GW observatories must rely on quantum non-demolition (QND) methods to suppress fundamental quantum fluctuations of the light fields used to readout the GW signal. Here we present a novel concept of how to turn a conventional Michelson interferometer into a QND speed-meter interferometer with coherently suppressed quantum back-action noise. We use two orthogonal polarizations of light and an optical circulator to couple them. We carry out a detailed analysis of how imperfections and optical loss influence the achievable sensitivity. We find that the proposed configuration significantly enhances the low-frequency sensitivity and increases the observable event rate of binary black-hole coalescences in the range of [Formula: see text] by a factor of up to ~300.