Cargando…

Phage proteins are expressed on the surface of Neisseria gonorrhoeae and are potential vaccine candidates

All Neisseria gonorrhoeae strains whose DNA sequences have been determined possess filamentous phage sequences representing their full genomes. The presence of filamentous phage DNA sequences in all sequenced N. gonorrhoeae strains suggest that purified phage particles might be used as a gonococcal...

Descripción completa

Detalles Bibliográficos
Autores principales: Kłyż, Aneta, Piekarowicz, Andrzej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107182/
https://www.ncbi.nlm.nih.gov/pubmed/30138416
http://dx.doi.org/10.1371/journal.pone.0202437
Descripción
Sumario:All Neisseria gonorrhoeae strains whose DNA sequences have been determined possess filamentous phage sequences representing their full genomes. The presence of filamentous phage DNA sequences in all sequenced N. gonorrhoeae strains suggest that purified phage particles might be used as a gonococcal vaccine. To test this hypothesis, we purified filamentous NgoΦfil phages and immunized rabbits subcutaneously. The elicited sera contained large quantities of anti-phage IgG and IgA antibodies that bound to the surface of N. gonorrhoeae cells, as shown by ELISA and flow cytometry. The elicited sera bound to the structural NgoΦ6fil proteins present in phage particles and to N. gonorrhoeae cells. The sera did not react with gonococcal outer membrane proteins. The sera also had bactericidal activity and blocked adhesion of gonococci to tissue culture cells. These data demonstrate that NgoΦfil phage particles can induce antibodies with anti-gonococcal activity and may be a candidate for vaccine development.