Cargando…
Deep neural network based histological scoring of lung fibrosis and inflammation in the mouse model system
Preclinical studies of novel compounds rely on quantitative readouts from animal models. Frequently employed readouts from histopathological tissue scoring are time consuming, require highly specialized staff and are subject to inherent variability. Recent advances in deep convolutional neural netwo...
Autores principales: | Heinemann, Fabian, Birk, Gerald, Schoenberger, Tanja, Stierstorfer, Birgit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107205/ https://www.ncbi.nlm.nih.gov/pubmed/30138413 http://dx.doi.org/10.1371/journal.pone.0202708 |
Ejemplares similares
-
Deep learning enables pathologist-like scoring of NASH models
por: Heinemann, Fabian, et al.
Publicado: (2019) -
Automatization and improvement of μCT analysis for murine lung disease models using a deep learning approach
por: Birk, Gerald, et al.
Publicado: (2020) -
Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis
por: Gilhodes, Jean-Claude, et al.
Publicado: (2017) -
Modulation of vascular contraction via soluble guanylate cyclase signaling in a novel ex vivo method using rat precision‐cut liver slices
por: Oldenburger, Anouk, et al.
Publicado: (2021) -
Time and phenotype-dependent transcriptome analysis in AAV-TGFβ1 and Bleomycin-induced lung fibrosis models
por: Strobel, Benjamin, et al.
Publicado: (2022)