Cargando…
SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks
Gene co-expression network analysis is extremely useful in interpreting a complex biological process. The recent droplet-based single-cell technology is able to generate much larger gene expression data routinely with thousands of samples and tens of thousands of genes. To analyze such a large-scale...
Autores principales: | Zhang, Rong, Ren, Zhao, Chen, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107288/ https://www.ncbi.nlm.nih.gov/pubmed/30102702 http://dx.doi.org/10.1371/journal.pcbi.1006369 |
Ejemplares similares
-
Bagging Statistical Network Inference from Large-Scale Gene Expression Data
por: de Matos Simoes, Ricardo, et al.
Publicado: (2012) -
syntenet: an R/Bioconductor package for the inference and analysis of synteny networks
por: Almeida-Silva, Fabricio, et al.
Publicado: (2022) -
Efficient gene orthology inference via large-scale rearrangements
por: Rubert, Diego P., et al.
Publicado: (2023) -
minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information
por: Meyer, Patrick E, et al.
Publicado: (2008) -
xcore: an R package for inference of gene expression regulators
por: Migdał, Maciej, et al.
Publicado: (2023)