Cargando…
Machine learning to relate PM2.5 and PM10 concentrations to outpatient visits for upper respiratory tract infections in Taiwan: A nationwide analysis
AIM: To examine the accuracy of machine learning to relate particulate matter (PM) 2.5 and PM10 concentrations to upper respiratory tract infections (URIs). METHODS: Daily nationwide and regional outdoor PM2.5 and PM10 concentrations collected over 30 consecutive days obtained from the Taiwan Enviro...
Autores principales: | Chen, Mei-Juan, Yang, Pei-Hsuan, Hsieh, Mi-Tren, Yeh, Chia-Hung, Huang, Chih-Hsiang, Yang, Chieh-Ming, Lin, Gen-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107525/ https://www.ncbi.nlm.nih.gov/pubmed/30148148 http://dx.doi.org/10.12998/wjcc.v6.i8.200 |
Ejemplares similares
-
Association between ambient PM(2.5) and outpatient visits of children's respiratory diseases in a megacity in Central China
por: Liu, Le, et al.
Publicado: (2022) -
Spatial Analysis of Ambient PM(2.5) Exposure and Bladder Cancer Mortality in Taiwan
por: Yeh, Hsin-Ling, et al.
Publicado: (2017) -
The impact of the synergistic effect of SO(2) and PM(2.5)/PM(10) on obstructive lung disease in subtropical Taiwan
por: Chen, Te-Yu, et al.
Publicado: (2023) -
PM(2.5) exposure and DLEC1 promoter methylation in Taiwan Biobank participants
por: Chou, Ying-Hsiang, et al.
Publicado: (2020) -
PM10, PM2.5, PM1, and PM0.1 resuspension due to human walking
por: Benabed, Ahmed, et al.
Publicado: (2022)