Cargando…

Agronomic biofortification of selected underutilised solanaceae vegetables for improved dietary intake of potassium (K) in Ghana

Agronomic biofortification is the deliberate use of mineral fertilizers to increase the concentration of a target mineral in edible portions of crops to increase dietary intake of the target mineral. Globally, increased dietary intake of potassium (K) is becoming a part of the strategy to address hi...

Descripción completa

Detalles Bibliográficos
Autores principales: Adu, Michael O., Asare, Paul A., Yawson, David O., Nyarko, Mishael A., Osei-Agyeman, Kwabena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107906/
https://www.ncbi.nlm.nih.gov/pubmed/30167498
http://dx.doi.org/10.1016/j.heliyon.2018.e00750
Descripción
Sumario:Agronomic biofortification is the deliberate use of mineral fertilizers to increase the concentration of a target mineral in edible portions of crops to increase dietary intake of the target mineral. Globally, increased dietary intake of potassium (K) is becoming a part of the strategy to address hidden hunger and related non-communicable diseases such as hypertension and cardiac disorders. This study aimed at demonstrating the efficacy of increasing the concentration of K in the edible portions of three commonly consumed but underutilized solanacea vegetables (Solanum aethiopicum, S. macrocarpon and S. torvum) in Ghana. The effects of different types and rates of K fertilizer application on the leaf- and fruit-K contents of the vegetables, as well as the K loss between the raw and cooked fruits were investigated. Five levels of each of three types of K fertilizer (liquid drench of potassium chloride, granular Muriate of potash and Sulphate of potash) were applied to each of the three field-grown vegetables. Yield data were collected and the fruits and leaves were analysed for the content of K, N, P, Ca, Fe, Zn and Cu. The results showed the rate of fertilizer application had significant effect on the yields of S. aethiopicum and macrocarpon but the yield of S. torvum was significantly affected by type, rate and interactive effect of type and rate of fertilizer application. Fruit K concentrations were greatest for S. aethiopicum (2130 mg K kg(−1) DW) and S. torvum (1883 mg K kg(−1) DW) with liquid KCl but with Sulphate of Potash for S. macrocarpon (1801 mg K kg(−1) DW). There were higher K concentrations in leaves than in fruits of all the vegetables. Household cooking of the fruits resulted in the retention of over 70% of the K content in the raw fruits. Potassium fertilization increased the Ca, Fe, and Zn contents of S. aethiopicum and S. torvum. It is concluded that agronomic biofortification may be a useful strategy to increase K intakes and other important elements (e.g. Fe and Zn) in the vegetables studied.