Cargando…
Structural neuroimaging as clinical predictor: A review of machine learning applications
In this paper, we provide an extensive overview of machine learning techniques applied to structural magnetic resonance imaging (MRI) data to obtain clinical classifiers. We specifically address practical problems commonly encountered in the literature, with the aim of helping researchers improve th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108077/ https://www.ncbi.nlm.nih.gov/pubmed/30167371 http://dx.doi.org/10.1016/j.nicl.2018.08.019 |
Sumario: | In this paper, we provide an extensive overview of machine learning techniques applied to structural magnetic resonance imaging (MRI) data to obtain clinical classifiers. We specifically address practical problems commonly encountered in the literature, with the aim of helping researchers improve the application of these techniques in future works. Additionally, we survey how these algorithms are applied to a wide range of diseases and disorders (e.g. Alzheimer's disease (AD), Parkinson's disease (PD), autism, multiple sclerosis, traumatic brain injury, etc.) in order to provide a comprehensive view of the state of the art in different fields. |
---|