Cargando…
A prediction model for early death in non-small cell lung cancer patients following curative-intent chemoradiotherapy
BACKGROUND: Early death after a treatment can be seen as a therapeutic failure. Accurate prediction of patients at risk for early mortality is crucial to avoid unnecessary harm and reducing costs. The goal of our work is two-fold: first, to evaluate the performance of a previously published model fo...
Autores principales: | Jochems, Arthur, El-Naqa, Issam, Kessler, Marc, Mayo, Charles S., Jolly, Shruti, Matuszak, Martha, Faivre-Finn, Corinne, Price, Gareth, Holloway, Lois, Vinod, Shalini, Field, Matthew, Barakat, Mohamed Samir, Thwaites, David, de Ruysscher, Dirk, Dekker, Andre, Lambin, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108087/ https://www.ncbi.nlm.nih.gov/pubmed/29034756 http://dx.doi.org/10.1080/0284186X.2017.1385842 |
Ejemplares similares
-
Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries
por: Jochems, Arthur, et al.
Publicado: (2017) -
Rapid learning in practice: A lung cancer survival decision support system in routine patient care data
por: Dekker, Andre, et al.
Publicado: (2014) -
A clinical decision support system for AI-assisted decision-making in response-adaptive radiotherapy (ARCliDS)
por: Niraula, Dipesh, et al.
Publicado: (2023) -
Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy
por: Niraula, Dipesh, et al.
Publicado: (2021) -
Author Correction: Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy
por: Niraula, Dipesh, et al.
Publicado: (2023)