Cargando…
Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant
The broadly conserved bacterial signalling molecule cyclic-di-adenosine monophosphate (c-di-AMP) controls osmoresistance via its regulation of potassium (K(+)) and compatible solute uptake. High levels of c-di-AMP resulting from inactivation of c-di-AMP phosphodiesterase activity leads to poor growt...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108528/ https://www.ncbi.nlm.nih.gov/pubmed/30074984 http://dx.doi.org/10.1371/journal.pgen.1007574 |
_version_ | 1783350161724932096 |
---|---|
author | Pham, Huong Thi Nhiep, Nguyen Thi Hanh Vu, Thu Ngoc Minh Huynh, TuAnh Ngoc Zhu, Yan Huynh, Anh Le Diep Chakrabortti, Alolika Marcellin, Esteban Lo, Raquel Howard, Christopher B. Bansal, Nidhi Woodward, Joshua J. Liang, Zhao-Xun Turner, Mark S. |
author_facet | Pham, Huong Thi Nhiep, Nguyen Thi Hanh Vu, Thu Ngoc Minh Huynh, TuAnh Ngoc Zhu, Yan Huynh, Anh Le Diep Chakrabortti, Alolika Marcellin, Esteban Lo, Raquel Howard, Christopher B. Bansal, Nidhi Woodward, Joshua J. Liang, Zhao-Xun Turner, Mark S. |
author_sort | Pham, Huong Thi |
collection | PubMed |
description | The broadly conserved bacterial signalling molecule cyclic-di-adenosine monophosphate (c-di-AMP) controls osmoresistance via its regulation of potassium (K(+)) and compatible solute uptake. High levels of c-di-AMP resulting from inactivation of c-di-AMP phosphodiesterase activity leads to poor growth of bacteria under high osmotic conditions. To better understand how bacteria can adjust in response to excessive c-di-AMP levels and to identify signals that feed into the c-di-AMP network, we characterised genes identified in a screen for osmoresistant suppressor mutants of the high c-di-AMP Lactococcus ΔgdpP strain. Mutations were identified which increased the uptake of osmoprotectants, including gain-of-function mutations in a Kup family K(+) importer (KupB) and inactivation of the glycine betaine transporter transcriptional repressor BusR. The KupB mutations increased the intracellular K(+) level while BusR inactivation increased the glycine betaine level. In addition, BusR was found to directly bind c-di-AMP and repress expression of the glycine betaine transporter in response to elevated c-di-AMP. Interestingly, overactive KupB activity or loss of BusR triggered c-di-AMP accumulation, suggesting turgor pressure changes act as a signal for this second messenger. In another group of suppressors, overexpression of an operon encoding an EmrB family multidrug resistance protein allowed cells to lower their intracellular level of c-di-AMP through active export. Lastly evidence is provided that c-di-AMP levels in several bacteria are rapidly responsive to environmental osmolarity changes. Taken together, this work provides evidence for a model in which high c-di-AMP containing cells are dehydrated due to lower K(+) and compatible solute levels and that this osmoregulation system is able to sense and respond to cellular water stress. |
format | Online Article Text |
id | pubmed-6108528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-61085282018-09-14 Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant Pham, Huong Thi Nhiep, Nguyen Thi Hanh Vu, Thu Ngoc Minh Huynh, TuAnh Ngoc Zhu, Yan Huynh, Anh Le Diep Chakrabortti, Alolika Marcellin, Esteban Lo, Raquel Howard, Christopher B. Bansal, Nidhi Woodward, Joshua J. Liang, Zhao-Xun Turner, Mark S. PLoS Genet Research Article The broadly conserved bacterial signalling molecule cyclic-di-adenosine monophosphate (c-di-AMP) controls osmoresistance via its regulation of potassium (K(+)) and compatible solute uptake. High levels of c-di-AMP resulting from inactivation of c-di-AMP phosphodiesterase activity leads to poor growth of bacteria under high osmotic conditions. To better understand how bacteria can adjust in response to excessive c-di-AMP levels and to identify signals that feed into the c-di-AMP network, we characterised genes identified in a screen for osmoresistant suppressor mutants of the high c-di-AMP Lactococcus ΔgdpP strain. Mutations were identified which increased the uptake of osmoprotectants, including gain-of-function mutations in a Kup family K(+) importer (KupB) and inactivation of the glycine betaine transporter transcriptional repressor BusR. The KupB mutations increased the intracellular K(+) level while BusR inactivation increased the glycine betaine level. In addition, BusR was found to directly bind c-di-AMP and repress expression of the glycine betaine transporter in response to elevated c-di-AMP. Interestingly, overactive KupB activity or loss of BusR triggered c-di-AMP accumulation, suggesting turgor pressure changes act as a signal for this second messenger. In another group of suppressors, overexpression of an operon encoding an EmrB family multidrug resistance protein allowed cells to lower their intracellular level of c-di-AMP through active export. Lastly evidence is provided that c-di-AMP levels in several bacteria are rapidly responsive to environmental osmolarity changes. Taken together, this work provides evidence for a model in which high c-di-AMP containing cells are dehydrated due to lower K(+) and compatible solute levels and that this osmoregulation system is able to sense and respond to cellular water stress. Public Library of Science 2018-08-03 /pmc/articles/PMC6108528/ /pubmed/30074984 http://dx.doi.org/10.1371/journal.pgen.1007574 Text en © 2018 Pham et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Pham, Huong Thi Nhiep, Nguyen Thi Hanh Vu, Thu Ngoc Minh Huynh, TuAnh Ngoc Zhu, Yan Huynh, Anh Le Diep Chakrabortti, Alolika Marcellin, Esteban Lo, Raquel Howard, Christopher B. Bansal, Nidhi Woodward, Joshua J. Liang, Zhao-Xun Turner, Mark S. Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant |
title | Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant |
title_full | Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant |
title_fullStr | Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant |
title_full_unstemmed | Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant |
title_short | Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant |
title_sort | enhanced uptake of potassium or glycine betaine or export of cyclic-di-amp restores osmoresistance in a high cyclic-di-amp lactococcus lactis mutant |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108528/ https://www.ncbi.nlm.nih.gov/pubmed/30074984 http://dx.doi.org/10.1371/journal.pgen.1007574 |
work_keys_str_mv | AT phamhuongthi enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT nhiepnguyenthihanh enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT vuthungocminh enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT huynhtuanhngoc enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT zhuyan enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT huynhanhlediep enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT chakraborttialolika enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT marcellinesteban enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT loraquel enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT howardchristopherb enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT bansalnidhi enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT woodwardjoshuaj enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT liangzhaoxun enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant AT turnermarks enhanceduptakeofpotassiumorglycinebetaineorexportofcyclicdiamprestoresosmoresistanceinahighcyclicdiamplactococcuslactismutant |