Cargando…
Deep neural network processing of DEER data
The established model-free methods for the processing of two-electron dipolar spectroscopy data [DEER (double electron-electron resonance), PELDOR (pulsed electron double resonance), DQ-EPR (double-quantum electron paramagnetic resonance), RIDME (relaxation-induced dipolar modulation enhancement), e...
Autores principales: | Worswick, Steven G., Spencer, James A., Jeschke, Gunnar, Kuprov, Ilya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108566/ https://www.ncbi.nlm.nih.gov/pubmed/30151430 http://dx.doi.org/10.1126/sciadv.aat5218 |
Ejemplares similares
-
Model-free extraction of spin label position distributions from pseudocontact shift data
por: Suturina, Elizaveta A., et al.
Publicado: (2017) -
Neural network interpretation using descrambler groups
por: Amey, Jake L., et al.
Publicado: (2021) -
DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data
por: Fábregas Ibáñez, Luis, et al.
Publicado: (2020) -
Large‐scale NMR simulations in liquid state: A tutorial
por: Kuprov, Ilya
Publicado: (2017) -
Efficient processing of deep neural networks
por: Sze, Vivienne, et al.
Publicado: (2020)