Cargando…

Inducible HSP70 antagonizes cisplatin-induced cell apoptosis through inhibition of the MAPK signaling pathway in HGC-27 cells

Inducible heat shock protein 70 (HSP70; also known as HSPA1 or HSP72) is implicated in cancer. As a stress-inducible heat shock protein, HSP70 is highly expressed in a variety of cancers and correlates with metastasis, chemotherapy resistance and tumor prognosis. The present study demonstrated that...

Descripción completa

Detalles Bibliográficos
Autores principales: Sheng, Lili, Tang, Tuo, Liu, Yinhua, Ma, Yunfei, Wang, Ziqian, Tao, Hong, Zhang, Yao, Qi, Zhilin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108861/
https://www.ncbi.nlm.nih.gov/pubmed/30066840
http://dx.doi.org/10.3892/ijmm.2018.3789
Descripción
Sumario:Inducible heat shock protein 70 (HSP70; also known as HSPA1 or HSP72) is implicated in cancer. As a stress-inducible heat shock protein, HSP70 is highly expressed in a variety of cancers and correlates with metastasis, chemotherapy resistance and tumor prognosis. The present study demonstrated that suppression of HSP70 through the specific inhibitor pifithrin-µ or by HSP70 knockdown enhanced cisplatin-induced apoptosis in HGC-27 gastric cancer cells. By contrast, upregulation of HSP70 through transfection of a HSP70 overexpressing plasmid decreased cisplatin-induced HGC-27 cell apoptosis. In exploring the underlying molecular mechanisms, the present results revealed that HSP70 antagonized cisplatin-induced HGC-27 cell apoptosis by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, suppressing the MAPK pathway enhanced cisplatin-induced HGC-27 cell apoptosis. Collectively, the present findings suggest that inhibition of HSP70 expression enhanced the sensitivity of HGC-27 cells to cisplatin via the MAPK signaling pathway, and that HSP70 may serve as a potential therapeutic target in gastric cancer.